-化学的側面からの考察-

元東京医科歯科大学大学
 う蝕制御学分野(特任講師)

・鶴見大学歯学部
 保存修復学教室(非常勤講師)
 中嶋省志(2019年11月作成)

【目次】

緒言:本稿の目的

第1章:歯質アパタイトとそのモデル物質であるハイドロキシアパタイトの化学的特性

- 第2章:歯質アパタイト(HA)の酸溶解のメカニズム
- 第3章: HAにおける飽和度の意味すること
- 第4章:HAに関する飽和度の定義と例
- 第5章: HA に関する飽和度の計算法
- 第6章: 脱灰液に含まれるミネラルイオンが脱灰に及ぼす影響
- 第7章: 脱灰液に含まれるフッ化物イオンが脱灰に及ぼす影響
- 第8章:プラークに取り込まれたフッ化物の効果と動態
- 第9章: 脱灰液に含まれる有機酸の濃度や種類の影響
- 第10章:初期う蝕(表層下脱灰)の特徴
- 第11章:表層下脱灰の形成メカニズム
- 第12章:局所塗布剤の作用メカニズムとフッ化カルシウム様物質
- 第13章:フッ化物による初期う蝕の再石灰化促進メカニズム
- 第14章: 唾液タンパク質(リン・タンパク質)と再石灰化現象
- 第15章:隠れう蝕(hidden caries)の形成メカニズムと多様な病理所見
- 第16章:象牙質における過石灰化現象(インビトロでの結果)

【文責】

本稿の内容の文責は筆者1人にあり、東京医科歯科大学および筆者が属していた教室(う蝕制御学分野)や鶴見大学の関係者の方々とは、いっさい関わりはありません。ご意見やご質問のある場合は、筆者のアドレス(nakashima_japanjp@yahoo.co.jp)に直接、お問い合わせ下さい。

なお本稿では必要に応じ、日本での疫学調査(厚労省による実態調査など)や国内外の学術論文も参 考に、目次に沿って解説を行った。それらの論文や著書の引用に当たって、本稿が商用を目的としてい ないので特段の引用許可を得ていない。読者には本稿を商用の目的で使用しないようお願いします。 また引用した図には,筆者によって改編(英語から日本語,説明文の追記・削除や変更,原文では表で あるが分かりやすくするため図に改編など)されたものも含まれる。

本稿はあくまで私的な学習資料であって、いわゆる論文や書籍ではない。従って、考察や推察以外に 筆者の感想や願望も含まれている。また誤字脱字や重複があるかも知れないが、ご容赦願いたい。読者 が本稿の内容に関連した論文を公表する時は、本稿そのものは引用しないで、本稿で引用したオリジナ ル論文を引用して頂きたい。

さらに詳しく学習したい方は、図書「Demineralisation and remineralisation of the teeth: Proceedings of workshop in Samos Greece 1982, ed by Leach SA and Edgar WM. IRL Press. PO Box 1, Eynsham Oxford England」などを参照して下さい。

【筆者の略歴】

省略(本教室の HP に既報の「歯磨剤のはなし」を参照)

次のサイトにアクセス: http://www.tmdu.net/publications/dissertations/

緒言:本稿の目的

う蝕予防におけるフッ化物の研究の歴史は, PubMed に登録されている年代では古くは 74 年前の 1945 に遡る。それ以来, 今日まで途絶えることなく基礎研究や臨床研究が行われ, すばらしい成果をあげて きた。同時に予防の実践でも大きな実績をあげ,「フッ化物によってう蝕は予防できる」ことは,「当 たり前のこと」として歯科界や社会に受け入れられてきた。また日本歯科保存学会の傘下にある「う蝕 治療ガイドライン」でも,フッ化物の使用を推薦する時代となった。

しかしながら筆者には、歯科界でのフッ化物への関心が、この「当たり前のこと」だけに注がれてい るうに感じられる。本稿では、この「当たり前のこと」を支えている予防メカニズムやフッ化物のユニ ークさに関する基礎研究を紹介するため、本稿を執筆した。

そこで本稿では、フッ化物がなぜう蝕予防(脱灰抑制あるいは再石灰化促進)に有効を中心に、その 化学的側面からのメカニズムについて先人達の研究成果、および筆者ら自身が行った研究成果を交えて 解説した。先人達に心からの感謝を捧げたい。しかしフッ化物について化学的側面からのメカニズムに 関する論文数は、膨大であり、とても筆者ひとりでまとめられるものではない。そこで本稿では、先人達 が残した実績のうち、かつて筆者が米国の Forsyth Institute に留学していたときに知り得た知見や、その 後、筆者の研究領域と関連の深かった分野の研究、筆者が在籍した会社(ライオン株式会社)と東京医 科歯科大学で在職中に、筆者ら自身が行った実験結果を中心に本稿の執筆に臨んだ。なお本稿で引用し た筆者らの実験結果の1部には、予備実験で得られたもの(これらは未発表の資料)や学会の抄録のみ の資料も含まれている。

本稿では「筆者ら」と記載しているのは、必ずしも筆者自身が筆頭著者とは限らない。煩雑さをさけ るため、筆頭か否かにかかわらず全て「筆者ら」とした(共著名や協力者名は明記しなかった)。これら の研究の協力者にはここで感謝を述べたい。本稿が、う蝕学やフッ化物について勉学する人にとって少 しでも役に立てれば、筆者の本望である。

謝辞:う蝕制御学分野の HP(http://www.tmdu.net/publications/dissertations/) に、本稿の掲載を許可して 下さった田上順次先生に感謝申し上げます。

第1章:歯質アパタイトとそのモデル物質であるハイドロキシアパタイトの化学的特性

歯の硬組織にはエナメル質,象牙質およびセメント質が含まれるが,セメント質は象牙質と類似して いる。従って脱灰や再石灰化を論ずる場合,本稿ではエナメル質と象牙質のみ取り上げる。

脱灰現象の解説をする前に、エナメル質と象牙質のミネラル分の特徴を解説する。その主要成分はリン酸カルシウムである。より特定すればハイドロキシアパタイト(HA)に"近い"リン酸カルシウムである。"近い"とは、純粋な HA と比べて少量または微量であるが、マグネシウム(Mg)やナトリウム

(Na)などの金属イオンや炭酸イオン(CO₃²⁻)などの陰イオンを不純物として含んでおり, HAと比べて非常に複雑な構成からなる。

例えば Moreno らは Ca, リン酸イオンおよび炭酸イオンに注目して, ヒトエナメル質と象牙質の化学 組成の分析を行い, 以下のような組成を報告した¹⁾。

エナメル質: (Ca)_{4.633}·(OH)_{0.633}·(PO₄)_{2.633}·(HPO₄)_{0.080}·(CO₃)_{0.287}

象牙質:(Ca)4.438·(OH)0.438·(PO4)2.438·(HPO4)0.141·(CO3)0.422

純粋な HA の化学式 (Ca)₅·(OH)·(PO₄)₃ と比べると以下のような点に気付く。①整数ではなく小数ば かりのイオン数で構成されている。②Ca と PO₄のイオン数は HA のそれらより若干少ない。③HA に無 い HPO₄ と CO₃ が含まれている。④エナメル質と比べて象牙質では Ca, PO₄ および OH のイオン数は少 ない,その代わり HPO₄ と CO₃のイオン数が多い。

エナメル質と象牙質の組成などの違いを表1に示した²⁾。これらの数値(重量%)において,無機成分の値は,水分と有機成分を完全に除去し,残った無機物を元素分析して得られた数値である。一方,有機成分の値は,そのような操作を行わずそのまま分析した得られた数値である。この表で特徴的なことを下記に列挙する。①エナメル質と象牙質において.

Caとリン酸(表1ではP)の含有量とその比は、 ほぼ同じである。しかし HA より若干小さい、すな わち Ca の含有量が相対的に少ない。②象牙質にお いて Mg と炭酸(CO₃)の含有量がエナメル質より 明らかに多い。逆に塩化物(Cl)濃度はエナメル 質において高い。③無機成分の全量としては、エナ メル質において多く、逆に水分は格段に少ない。④ 結晶性インデックスは象牙質においては、エナメル 質の約半分である。すなわち結晶としては不純物 のため歪んだ結晶である。⑤結晶の大きさは、HA と比べるとエナメル質および象牙質とも明らかに 小さい。さらに象牙質の結晶の体積は、エナメル質 と比べて,約1/71でしかない。このようにエナメ ル質と比べて象牙質の特性はかなり異なる。その ため象牙質では隙間や水分が多く、歯は柔らかい。 またこの隙間が多いため酸が象牙質内に浸透しや すく、さらに小さい結晶性インデックスと小さい結 晶サイズのため、エナメル質と比べて酸に溶解しや

組成 (wt%)	エナメル質	象牙質	НА
Ca	36.5	35.1	39.6
Р	17.7	16.9	18.5
Ca/P	1.63	1.61	1.67
Na	0.5	0.6	-
Mg	0.44	1.23	-
К	0.08	0.05	-
CO ₃	3.5	5.6	-
F	0.01	0.06	-
Cl	0.3	0.01	-
全無機成分	97	70	100
全有機成分	1.5	20	-
水分	1.5	10	-
結晶性 インテ [゙] ックス	70~75	33~37	100
結晶サイズ	$100\times50\times50~\mu m$	$35\times 25\times 4~\mu m$	200~600 μm

表1 エナメル質,象牙質および HA の組成の比較

すい。口腔内(*in-situ*)での検討によると,象牙質はエナメル質よりも単位時間あたり約3.1 倍速く脱灰 される³⁾。

このような特性の違いのため、エナメル質および象牙質と HA とでは、酸溶解性はかなり異なる。しかし本稿では、リン酸カルシウムとしての酸溶解現象は、HA と同様に取り扱うことにする。すなわちHA をエナメル質および象牙質のミネラル分のモデル物質として考える。こうすることで歯質の脱灰や再石灰化現象に関し、理論的考察が簡潔となり、脱灰や再石灰化現象の理解が容易になる。本稿では全般にわたって、HA と表記した場合、化学的に純粋な HA を指す場合と、Mg や炭酸イオン (CO₃²) あるいは酸性リン酸イオン (HPO₄²) など様々な成分を含むエナメル質などの歯質ミネラル成分を指す場合と、必ずしも便宜的に区別していない。また FA と表記した場合も同様に、純粋な FA [(Ca)₅·(F)·(PO₄)₃]を指す場合と、HA あるいは歯質ミネラルの水酸基 (OH) が部分的に F に置換されたフッ化物含有アパタイト (fluoridated apatite)場合と区別していない。具体的にはフッ化物含有アパタイトは、(Ca)₅·(OH)·1_{*}(F)·x(PO₄)₃と書き表され、x は 0~1 の範囲内で任意の数値を取る。ここでもフッ化物含有の歯質アパタイトは、Mg や炭酸あるいは酸性リン酸イオンを含む。このような煩雑を避けるため、単純に HA あるいは FA と表記したが、読者には文脈の中でこれらの区別は容易にできると思う。

表2に歯科分野で取り扱うリン酸カルシウムやカルシウム含有物質の化学式などを示した。命名法, 化学式,略表記は文献や研究者によって若干異なるが,その差異にあまり拘る必要はない。この表で示 した種々のリン酸カルシウムおよびその略表記は,本稿で随時言及する。

リン酸カルシウム	英語表記	化学式	略表記	備考
ハイドロキシアパタイト	hydroxyapatite	(Ca) ₅ (OH)(PO ₄) ₃	HA	歯, 骨, 歯石
フルオロアパタイト	fluoroapatite	(Ca) ₅ (F)(PO4) ₃	FA	歯, サメの歯
第2リン酸カルシウム2水和物	dicalcium phosphate dihydrate	CaHPO ₄ ·2H ₂ O	DCPD	歯石,う蝕エナメル質
第2リン酸カルシウム無水和物	dicalcium phosphate anhydrate	CaHPO ₄	DCPA	DCPD が脱水したもの
α, βリン酸3カルシウム	α, β-tricalcium phosphate	α, β-(Ca) ₃ (PO ₄) ₂	α, β-ΤСΡ	β タイフ [°] :歯石,う蝕象牙質
オクタ・リン酸カルシウム	octacalcium phosphate	(Ca) ₈ (HPO ₄) ₂ (PO ₄) ₄ ·5H ₂ O	OCP	歯石,骨?
アモルファス・リン酸カルシウム	amorphous calcium phosphate	$(Ca)_a(PO_4)_b(HPO_4)_c \cdot H_2O$	ACP	自発的石灰化でできる. 組成は一定しない
第4リン酸カルシウム	tetra calcium phosphate	(Ca) ₄ (PO ₄) ₂ O	TTCP	リン酸カルシウムセメン トの原料
フッ化カルシウム	calcium fluoride	CaF ₂	-	フッ化物塗布面
炭酸カルシウム	calcium carbonate	CaCO ₃	-	犬などの動物の歯石

表 2. 歯科で取り扱う主なリン酸カルシウムとカルシウム含有化合物

酸溶解性の観点からの HA の化学的特長は、この物質が非常に強い塩基性化合物であることを強調したい。身近な塩基性化合物は、水酸化ナトリウム(NaOH)や塩化カルシウム(Ca(OH)₂)などである。これらの水溶液が強い塩基性を示すことは誰もが知っている。HA の塩基性の由来は、この化合物に水酸基(OH)が存在することによる。またリン酸基(PO₄)が存在することも塩基性の要因となる。それは、PO₄が以下のような加水分解という反応を引き起こすからである。まず下の式 1)では、HA がそれぞれの構成イオンに解離し、OH イオンを放出してアルカリ性をもたらす。式 2)では PO₄³⁻は、H⁺との結合定数(K₃)が非常に大きいため(K₃ = 2.2×10¹²)、H₂O の水素と反応して HPO₄²⁻となり OH が生成される。

1) $(Ca)_5(OH)(PO_4)_3 \rightarrow 5Ca^{2+} + OH + 3PO_4^{3-}$

2) PO_4^{3-} + H_2O → HPO_4^{2-} + OH^- ・・・加水分解

結合定数:K₃=[(HPO₄²⁻)(OH⁻)]/(PO₄³⁻) = 2.2×10¹²

(参照) $OH^{-} + H^{+} \rightarrow H_2O$

結合定数:Kw=(H₂O)/[(H⁺)(OH⁻)]=10¹⁴

その結合定数(K₃)は、水素イオン(H⁺)と水酸基イオン(OH)が結合して水(H₂O)が生成されると きの結合定数(Kw = 10¹⁴)に、ほぼ匹敵する。ちなみに水のイオン積は、Kwの逆数(10⁻¹⁴)である。こ うした 2 つの要因から、潜在的には HA は強いアルカリ性物質としての性質を有する。しかし pH 中性 領域での HA の溶解性は極めて低いため、HA の水スラリーはアルカリ性を示さない。FA の場合は、その 構成イオンに OH は存在しないが、PO₄³⁻が存在するため HA と同様、潜在的には強いアルカリ性を示す。 もし HA および FA が水に溶解性であれば、NaOH と同様、強いアルカリ性を示すはずである。そのよう な物質を「潜在的にアルカリ性物質」と呼ぶ。

同様に、 PO_4^{3-} を含むリン酸カルシウム (TCP, OCP, ACP, TTCP) も、潜在的にはアルカリ性の特性を有す する。それらと比較して PO_4^{3-} を含まないリン酸カルシウム (DCPD, DCPA) は、ほぼ中性の特性を有す る。表 2 には記載していないが、 $Ca(H_2PO_4)_2$ というリン酸カルシウムは、酸性の性質を示す。ちなみに炭 酸カルシウム (CaCO₃) は下記の加水分解と脱炭酸ガス反応を起こし(式 3 と 4)、その結果、弱アルカ リ性の性質を示す。

3) $CaCO_3 \rightarrow Ca^{2+} + CO_3^{2-}$

4) CO_3^{2-} + $H_2O \rightarrow 2OH^-$ + CO_2

(CO₂は気体として水系から空気中に拡散し、反応が右に進む)

第2章:歯質アパタイト(HA)の酸溶解のメカニズム

下記の式 1)と 2)を用いて, HA の酸溶解のメカニズムを解説する。HA 粉末を水に分散すると, 下記の式 1)のようにわずかに溶解して化学平衡に達する。

1) $(Ca)_5(OH)(PO_4)_3 \rightarrow 5Ca^{2+} + OH^- + 3PO_4^{3-}$

2) $5Ca^{2+} + OH^{-} + 3PO_4^{3-} + 4H^{+} \rightarrow 5Ca^{2+} + 3HPO_4^{2-} + H_2O^{-}$

化学平衡とは化学変化が自然に起きる環境下において、もうそれ以上は変化が起きない状態で、一般的には最も安定な状態である。より厳密には、式1)において右に進む反応速度と左に戻る反応速度が同じになった状態である。式2)に示したように、この平衡状態に酸(H⁺)が導入されると、右辺に示したような変化が起きる。すなわち H⁺の一部は OH⁻と結合して水(H₂O)を形成する。また H⁺の一部はPO₄³⁻と結合して 3HPO₄²⁻となる。すなわち平衡状態での OH⁻と PO₄³⁻の濃度が低下する。すると平衡状態が崩れ、不安定になる。HA はこの平衡状態を維持するため、低下した OH⁻と PO₄³⁻の濃度を回復しようとして HA から OH⁻と PO₄³⁻を遊離する。その結果、安定な HA 結晶性が崩壊し、Ca²⁺も HA から遊離する。こうして HA は式1)で示した平衡状態に戻ろうとする。この一連の化学変化は酸塩基反応(または中和反応)と同じであり、HA の溶解現象の本質である。ただし1)と2)の反応式は、概念的に分りやすく

するため簡略化して示してある(実際には, PO4³⁻以外に HPO4²⁻, H₂PO4⁻, CaHPO4 などが関与)。この HA の溶解反応は、下記の3)と4)式で示した水酸化ナトリウムあるいは水酸化カルシウムと塩酸の反応と同 じである。生成した NaCl あるいは CaCl2 はその溶解度の範囲内でイオン化して溶ける。このような酸

- NaOH + HCl \rightarrow NaCl + H₂O 3)
- $Ca(OH)_2 \ + \ 2HCl \ \rightarrow \ CaCl_2 \ + \ 2H_2O$ 4)

塩基反応は、化学反応の中では極めて強い反応で、酸と塩基が共存する限り避けられない反応である。 すなわちHAは、酸に対して極めて弱い性質(宿命)を有する。

しかしここで留意しなければならないことは、プラークにおけるエナメル質の脱灰では、プラークに 含まれる酸は、エナメル質に含まれる塩基の量と比べてはるかに少ない(有限の量)。そのため、酸は短 時間で中和されて消失し、一定の短時間後には脱灰は停止する。この中和反応と唾液による酸の除去作 用(中和と洗い流し)によって酸性 pH は中性に回復する。このような一連の現象を Stephan curve と呼 ぶ¹)。Bowen は、さらにプラークではアンモニアやアミン類などの塩基性物質も産生されているので、 Stephan curve に対して中和する作用があると解説している¹⁾。

EDTA には酸性ではないが、歯質を溶かす作用があり、根管の清掃でしばしば使用される。そのメカニ ズムは、上述の酸で歯質を溶解させるメカニズムとは若干異なる。上で解説し たように HA はわずかに溶けて平衡状態となる(式 5)。ここに EDTA が導入 されると、Ca²⁺は EDTA と強く結合し、主に[EDTA·(Ca)]²⁺となる(Ca のキレー

5) $(Ca)_{5}(OH)(PO_{4})_{2} \rightarrow 5Ca^{2+} + OH^{-} + 3PO_{4}^{3-}$

ト化:式6)。図1にCa²⁺がキレート化された様子を示す。通常EDTAとCa²⁺

- 6) $5Ca^{2+} + OH^{-} + 3PO_4^{3-} + 5EDTA^{4-} \rightarrow$
 - $5[EDTA(Ca)]^{2-} + 3HPO_4^{2-} + OH^{-}$

図 1 EDTA が M (Ca) に結合した状態

とは、ほぼ定量的に結合反応を起こす。すなわち Ca²⁺が EDTA より過剰に溶解していれば、ほぼ 100%の EDTA は Ca²⁺と結合する(逆も同様)。その結果、キレート化されていない Ca²⁺濃度が低下して、酸の場 合と同様, 平衡状態が崩れる。HA はこの平衡状態を維持しようとして, Ca²⁺を遊離する。同時に安定な HA 結晶性が崩壊し、PO4³⁻とOH も HA から遊離する。こうして HA は平衡状態に戻ろうとして歯質は溶 解する。この溶解に伴い OH と PO4³⁻とが遊離して EDTA 溶液の pH は上昇するはずである。しかし pH が中性領域では、一部の EDTA 分子は H⁺と結合(EDTA·H₂²⁻) しているので、この H⁺は遊離した OH お よび PO₄³⁻と反応して, H₂O および HPO₄²⁻を形成し pH は上昇しにくい。

さて歯質の脱灰と再石灰化を考えるとき、HA以外に数種類のリン酸カルシウムの酸溶解性を理解して おく必要がある。図2にそれらのリン酸カルシウムの酸溶解性を示した²⁾。このグラフは, solubility isotherm(等温溶解)と呼ばれる。横軸は pH,縦軸は対数表示の Ca 溶解量(mol/L およびそれに対応す る ppm) である。この図は、後で述べる「熱力学的溶解度積」という特性値と密接に関係しており、あ る計算に基づいて作成される。この図にはエナメル質の溶解性曲線は記載されていないが,HAの曲線か ら垂直方向に少し上に平行移動した位置すると推察される(緑色の破線)。この図から重要なポイント を以下に列挙する(DCPDとOCPの略記の意味は、第1章の表2を参照)。

① HA では, pH が中性から弱アルカリ性付近で最も低い溶解性を示し, pH が 1 ずつ低下すると約 10 倍 の高い溶解性を示す。エナメル質の方が HA より数倍高い溶解性を有すると推察される。

② DCPDは、中性付近からpH弱酸性の領域では、HAと比べて高い酸溶解性を示すが、それ以下のpHではむしろ低い溶解性を示す。両者におけるこの違いは、エナメル質での表層下脱灰の形成メカニズムと深くかかわっている。このことは、第11章で詳しく解説する。
③ OCPはHAと類似なpH依存性の溶解特性を示すが、溶解性はHAより高い。この特性は、脱灰歯質の再石灰化を促進する歯科材料の1つとして注目されている³)。また

OCP はエナメル質や骨の石灰化形

図 2. 代表的リン酸カルシウムの酸溶解性(solubility isotherms)

成あるいは歯石形成の過程にて観察され, HA の前駆体として知られている^{4.5)}。すなわち生体内ではまず OCP が生成し, その後, これが加水分解を受けて, より安定な HA に"近い"リン酸カルシウムに変化する。

第3章: HAにおける飽和度の意味すること

飽和度¹⁻⁰とは,脱灰と再石灰化現象を定量的に理解するために必須な考え方であるが,その内容はかなり物理化学的な側面が強く,一般には理解しにくい。本章では理論的な解説を行うが,必ずしも全て 理解する必要はない。以下のような4つの定性的な結論だけを理解すれば十分である。詳しくは第4と 5章で解説する。

1) 脱灰されやすさは, pHの程度だけでは左右されない。

- 2) pH の値や酸の濃度が同じでも、Ca やリン酸イオンの濃度が高いほど脱灰されにくくなる。場合によっては、pH4.3 でも脱灰されなくなる。このことと 1)と合わせて、臨界 pH は一定の値をとらず Ca やリン酸イオンの濃度によって変動する ⁹。臨界 pH については、第6章で言及する。
- 3) 仮に pH や酸の濃度が同じで,かつ Ca やリン酸イオンの濃度が通常の範囲内であっても,ppm あるい はサブ ppm レベルのフッ化物イオン (F) が存在すれば,脱灰は効果的に抑制され,1 ppm レベルで pH4.3 でも脱灰されなくなる場合がある。
- 4) フッ化物による脱灰抑制効果とは、脱灰される歯質ミネラルの量をフルオロアパタイト(FA)の沈着 として補う現象である。この現象は、酸性下で歯質アパタイトの表面に FA が石灰化沈着する反応で ある。このことと 3)と合わせて第7章で詳しく言及する。
- 5) 実験室実験において、もし脱灰液の組成(Ca, リン酸イオン、有機酸の種類と濃度, pH, F濃度など) が事前に判明していれば、その数値を用いて飽和度が計算でき、歯質の脱灰の起きやすさ(あるいは 再石灰化の起きやすさ)が事前に推定できる。このことから、人工初期う蝕のモデルとして脱灰程度 の異なるサンプルを作成できる。同様に、再石灰化の進行程度も任意に選ぶことができる。
- 6) プラークを採取し、そこに含まれる溶解したミネラル成分(Caとリン酸イオン濃度)の分析とpHの

測定を行うことで、そのプラークの脱灰作用の程度を推定することができる。同様に唾液のミネラル 成分の分析とpHを測定することで、その唾液の再石灰化作用の程度を推定することができる。ちな みに唾液が、HA以外の各種リン酸カルシウム(TCP, OCP, DCPD)に関して過飽和であることが確か められている⁷⁾。

第4章:HAに関する飽和度の定義と例

次のような1つの具体的な例を用いて、本章を解説する。HA 粉末を乳酸と低濃度のF(ただしフッ 化カルシウム CaF2を形成しない程度のF濃度)を含む溶液に

溶解させ、まだ HA 粉末が溶け切らない「平衡状態」を想定する。このとき乳酸の溶液には、下記の式 1)で右に示した成分 (陽イオン,陰イオン,非イオン:表1も参照)が溶解してい

る。なお下記の式 1)と表 1 では乳酸を LH, 乳酸イオンを L'と 表記した。表 1 に示した成分のうち, CaH₂PO₄+, CaL⁺あるいは CaHPO₄を「イオンペア」と呼ぶこともある。

長1	関与	す	31	'オ	ン種。	と非イ	オン種
----	----	---	----	----	-----	-----	-----

陽イオン	陰イオン	非イオン	
Ca ²⁺	H ₂ PO ₄ ⁻	$CaHPO_4$	
$CaH_2PO_4^+$	HPO42-	H_3PO_4	
CaL^+	PO4 ³⁻	LH	
H^{+}	L-	(H_2O)	
H_2F^+	OH-	HF	
	F-		

1) $HA + LH + F^{-}$

 $\Rightarrow \underline{Ca^{2+} + CaH_2PO_4^+ + CaL^+ + H^+ + H_2F^+} (陽イオン)$

+ $\underline{H_2PO_4^{-} + HPO_4^{2-} + PO_4^{3-} + L^{-} + OH^{-} + F^{-}$ (陰イオン)

+ $CaHPO_4 + H_3PO_4 + LH + HF$ (非イオン)

ここでの平衡状態では、陽イオンとして5種類、陰イオンとして6種類、非イオンとして4種類を示した (ただし、これ以上のイオン種と非イオン種を扱った論文もある)。

表1にて赤枠で囲ったイオンのみに着目して,平衡状態における(Ca)⁵×(OH)¹×(PO₄)³という掛け算で表 される量(べき乗の積)を考える。(Ca)⁵×(F)¹×(PO₄)³も同様である。この値を K_{HA} と表記する(FAの場 合は K_{FA})。ここで,カッコはそれぞれのイオンの活量(ion activity)と呼ばれる量で,その濃度に活量 係数(activity coefficient : $0 < \gamma \le 1.0$)を掛けた量である。なお非イオン性の溶解成分の活量係数は 1.0 と定められている。 K_{HA} の値は温度が一定であれば,それぞれのイオン濃度や pH に関係なく常に一定の

値を示す。化学の分野では、これを熱力学的溶 解度積という(一般に Ks と表記)。K_{HA}の実 測値は、研究者によって若干異なるが、10⁻⁵⁸~ 10⁻⁵⁹レベルである。もし HA を

(Ca)₁₀(OH)₂(PO₄)₆と表記してある場合は, K_{HA}の値は (Ca)¹⁰×(OH)²×(PO₄)⁶という式で計算(2
 乗倍)され, 10⁻¹¹⁶~10⁻¹¹⁸レベルとなる。ちなみに(Ca)₁₀(OH)₂(PO₄)₆と表記される場合は, HA結晶の最小単位である単位胞を意味し,

(Ca)₅(OH)(PO₄)₃と表記される場合は化学組成 式を意味する。

HA 以外に種々のリン酸カルシウムの熱力学 的溶解度積が知られている¹⁻⁵(表 2)。この 表2 各種 Ca 化合物の熱力学的溶解度積

Ca 化合物	熱力学的溶解度積	$\log(V_{c})/N$ *
	[-log(Ks)]	-10g(Ks)/IN*
$(Ca)_5(F)(PO_4)_3^{1)}$	60.5	6.72
(Ca) ₅ (OH)(PO ₄) ₃ ¹⁾	58.4	6.51
ヒトエナメル質 ³⁾	54.26 (平均値)	6.03
ヒト象牙質 ⁴⁾	44.52	5.65
β -(Ca) ₃ (PO ₄) ₂ ¹⁾	28.9	5.78
$(Ca)_8(H)_2(PO_4)_6 \cdot 5H_2O^{2)}$	96.9	4.29
$CaHPO_4 \cdot 2H_2O^{1)}$	6.59	3.30
CaF2 ⁵⁾	10.45	3.48

*N:関与するイオンの数

表では、対数にマイナスの符号を付けた値が示してある。この数値から、水に対する溶解性が推定できる。それには、この数値を構成イオン数(N)で除した値で比較する(表の-log(Ks)/N)。この値が大きいほど、水に対する溶解性が低い。例えば FA と HA では水に対する溶解性に大きな差はない。それに対し、HA とヒトエナメル質では、ある程度の差はあると推察される。さらにヒトエナメル質とヒト象牙質では、もっと大きな差が推察される。

さて次に, 飽和度について概念的に解説する。1 例としてプラークや唾液あるいは歯髄液を化学分析 して, Ca と全リン酸イオン濃度および pH が測定できたとする。別の例として, インビトロ実験で調製し た脱灰液や人工唾液に含まれるこれらの数値が既知とする。そしてこれらの値から, まず

 $(Ca)^{5} \times (OH)^{1} \times (PO_{4})^{3}$ の値を計算する。この量を $I_{p(HA)}$ と表記する(I_{p} は Ion Product の略)。次いでこの $I_{p(HA)}$ を K_{HA} で割った値を求める。この商の値を DS_{HA} と表記する(Degree of Saturation regarding HA)。 すなわち $DS_{HA} = (Ca)^{5} \times (OH)^{1} \times (PO_{4})^{3} / K_{HA}$ の値を計算する。この DS_{HA} を HA に関する、それぞれの溶液 (プラーク、唾液、歯髄液)の飽和度と呼ぶ。FA の場合は、 $(Ca)^{5} \times (F)^{1} \times (PO_{4})^{3}$ という量を考える。この値 を K_{FA} と表記する。この測定値も研究者によってやや異なるが、 10^{-60} レベルである。 K_{HA} の場合と同様、 $DS_{FA} = (Ca)^{5} \times (F)^{1} \times (PO_{4})^{3} / K_{HA}$ の値を計算する。

表3に示したように、DS_{HA}またはDS_{FA}の値が1.0より小さい場合は、HA あるいはFA の溶解が起きる。1.0より大きい場合はHA あるいはFA の石灰化 沈着が起きる。FA の場合は、フッ化物による脱灰抑 制あるいは再石灰促進効果が期待できる。1.0の場合 は平衡状態にあり、見かけ何も起きない。

上の説明を図1にて図解する。飽和度を決める因子には、HAまたはFAを溶かす因子とこれらを析出 させる因子がある。前者には酸のpHと濃度や種類などが該当し、後者にはCaやリン酸イオンあるいは pH(すなわちOH)やFなどのHAやFAの構成イオンが該当する。図の中央は、コップに水がちょう

ど満杯となっている。これは平衡 状態を示し,見かけ何も変化が起 きない。左のコップは水で満たさ れていなく,まだ水を受け入れる 余地がある。この余地のため,こ のコップのカラの容積部分だけ HA や FA を脱灰できるポテンシャ ルがある。右のコップはその容積 以上に水が注がれ,溢れる状態に ある。この溢れる容積分だけ HA や FA を析出(石灰化)できるポ テンシャルがある。

図1 コップに水を満たすモデルで飽和度を理解する概念図

in-vivo 試料液(プラーク液, 唾液, 血液, 歯髄液など)やそれを模した人工的に調製した試料液の飽和 度が, これから検討したい研究において事前に既知であると, 以下のようなメリットが得られる(一部, 第3章での解説と重複する)。

1) その試料液は, HA あるいは FA などのミネラルを生み出す(あるいは溶かす)ポテンシャルが分り,

個々の結果の比較やその考察が有機的に結びつく。in-vitro研究では、実験計画の立案に威力を発揮する。

2) もしその試料液が過飽和にもかかわらず、石灰化物の形成や沈着が見られなかった場合は、石灰化を抑制する物質がその試料液に一定濃度以上に含まれていることが推察される。その代表的な物質の1 つがリン・タンパク質⁶⁻⁹⁾であり、もう1つの物質が歯石形成を抑制するピロリン酸塩と亜鉛化合物などである¹⁰⁻¹⁴⁾。その物質が化学的に特定できれば、その条件下での石灰化のメカニズムが、より深く理解できる。リン・タンパク質については第14章でも言及する。また筆者による総説「歯石? もう一度見直してみよう、この不思議」に詳しい(<u>http://www.tmdu.net/publications/dissertations/</u>)。

さて Moreno らは、う蝕経験の異なる被験者のプラーク液について、ミネラルイオン濃度や有機酸の

濃度および pH などを分析した¹⁵⁾。筆者はそのデ ータをもとに, HA に関する飽和度を計算した。た だし計算の都合でミネラルイオン以外のイオン

(K⁻, NH₄⁺, Cl⁻など)の濃度は 50 mM の NaCl で代 替した。その結果を表 4 に示した。う蝕経験のな い被験者と DMTF スコアが 10 以上の被験者では pH 以外, その組成に大きな違いはない。しかし飽 和度に関しては, う蝕経験のない被験者で高い値 を示した。これは, 同被験者において pH が高い からである。飽和度に関し, pH が大きく寄与する ことが分る。この表には記載していないが, 彼ら 表4 HA に関する唾液およびプラーク液の飽和度

構成	DMFT = 0	DMFT > 10
可溶性全 Ca ²⁺ (mM)	5.6	5.8
可溶性全リン酸 (mM)	15.5	16.3
NaCl (mM)	100	100
至有機酸 (mM)	93.6	87.7
pH	6.35	5.85
飽和度 (HA)	1.0×10 ¹¹	1.7×10 ⁸

* 有機酸:コハク酸,乳酸,酢酸,ギ酸,プロピオン酸, ブチル酸の合計濃度

は pH の高さとアンモニウムイオン (NH₄⁺) 濃度のと相関性を認めている¹⁵⁾。恐らく NH₄⁺は, 唾液に含まれる尿素の加水分解 (ウレアーゼ酵素) によってもたらされるアンモニア (NH₃) に由来すると考えられる。NH₃は, 水 (H₂O) を加水分解して水酸基 (OH) を生成し, その液体をアルカリ性にする性質がある (下式 1, 2)。

式 1) $(NH_2) \cdot (CO) \cdot (NH_2) + H_2O \Rightarrow 2NH_3 + CO_2 (ガスとして散逸)$:

式 2) $NH_3 + H_2O \Rightarrow NH_{4^+} + OH^-(アルカリ性)$

このことからう蝕に罹患しにくい人は、何らかの理由で唾液由来の尿素濃度が高く、かつウレアーゼ 活性も高いことから、プラーク pH の低下が起こりにくくなる。その結果、う蝕になりにくいことが推察 される¹⁰。

第5章: HA に関する飽和度の計算法

上で飽和度の概念を解説した。これが理解できれば本章での計算プロセスは、必ずしも理解できなく とも、以下の脱灰および再石灰化現象やフッ化物の作用メカニズムは十分理解できる。従って本章はス キップしても差し支えない。しかしながら本稿の目的の1つが、これらの現象やメカニズムを理論的に 理解すること、そのためには飽和度の計算方法を明確に示しておくことは必要である^{1,2}。

まず乳酸が産生されたプラーク液を想定する。便宜的に,その液体には一定濃度のミネラルイオンや 乳酸などが含まれ,一定のpHであるとする。表1にその状態を,化合物の種類とその濃度およびその化 合物の活量係数(γ)を用いて記述した。非イオンの化合物の活量係数は1.0である。この表にて化合物 の濃度は[]で示し、その濃度が既知量である場合は[]*とした。また後の計算の便宜にため、全Ca量

(total Ca), 全リン酸量(total P), 全乳酸量(total L) および全フッ化物量(total F) も導入した。
 次いで、これらの化合物について成立している4つの化学法則(①結合定数、②電気的中性の原理、③)

質量保存の法則, ④濃度と活量および活量係数の関係)に従って, 表1で示した記号(濃度,活量係数) を用いて,化合物同士の「関係式」を記述する。表2に示した16の「関係式」には,9の既知量と13の

化合物	濃度	活量係数	化合物	濃度	活量係数	化合物	濃度	活量係数
Ca^{2+}	[m]	$\gamma_{\rm m}$	LH	[LH]	$\gamma_{\rm L1}~(=1.0)$	H^{+}	[H]*	$\gamma_{\rm H1}$
CaHPO ₄	[X]	γ _x (=1.0)	L-	[L]	γ_{L2}	OH	[OH]*	$\gamma_{\rm H2}$
$CaH_2PO_4^+$	[Y]	$\gamma_{\rm Y}$	CaL ⁻	[CaL]	γ_{L3}	Na+	[Na]*	γ_{Na}
(<u>total Ca</u>)	[M]*	-	(<u>total L)</u>	[L ₀]*	-	K ⁺	[K]*	$\gamma_{\rm K}$
H ₃ PO ₄	[P ₀]	γ _{P0} (=1.0)	F	[F]	$\gamma_{\rm F}$	Cl-	[Cl]*	$\gamma_{\rm Cl}$
$H_2PO_4^-$	[P ₁]	γ_1	HF	[HF]	$\gamma_{F1} (=1.0)$			
HPO ₄ ²⁻	[P ₂]	γ_2	HF_{2}	$[HF_2]$	γ_{F2}			
			1					

表1イオン濃度の計算方法(1)

<例> CaCl₂ + KH₂PO₄ + 乳酸 (LH) + NaCl + KOH (pH)

既知量(計9): [M]*,[P]*,[L₀]*,[F₀]*,[H]*,[OH]*,[Na]*,[K]*, [Cl]* 非イオン種の活量係数(yx, yPo, yLl, yFl)は, 1.0 と定められている。

未知量の濃度と14の未知量の活量係数が含まれている(未知量の合計は27)。すなわち27の未知量を 含む16の関係式からなる連立方程式が成立している。また活量係数は、溶液中のイオン強度(ion strength: I)と密接な関係があることから、下記のDebye-Huckel³⁾の式も連立方程式の解を得るときに考 慮に入れる。この式にあるAとBは温度に依存した定数, z_iはそれぞれのイオンの電荷数(定数), r_iは

表2イオン濃度の計算方法(2)

結合定数		電気的中性の原理	<u>質量保存の法則</u>
(既知)		<陽イオンの電荷数>	$[P]^*=[P_0]+[P_1]+[P_2]+[P_3]+[X]+[Y]$ 12)
(H)(H ₂ PO ₄)/(H ₃ PO ₄)=K ₁	1)	2[m]+[Y]+[CaL]+[H]+[Na]+[K]	$[M]^*=[m]+[X]+[Y]+[CL]$ 13)
(H)(HPO ₄)/(H ₂ PO ₄)=K ₂	2)		$[L_0]^* = [LH] + [L] + [CaL]$ 14)
(H)(PO ₄)/(HPO ₄)=K ₃	3)	<陰イオンの電荷数>	$[F_0]^* = [F] + [HF] + [HF_2]$ 15)
(CaHPO ₄)/(Ca)(HPO ₄)=Kx	4)	$[P_1]+2[P_2]+3[P_3]+[L]+[F]+$	
(CaH ₂ PO ₄)/(Ca)(H ₂ PO ₄)=Ky	5)	[HF ₂]+[OH]+[Cl]	進 由し 江县の 間 低子
(LH)/(H)(L)=Ka	6)		
(CaL)/(Ca)(L)=Kb	7)	陽イオンの総電荷	$(A) = [A]\gamma_A \qquad 16)$
(H)(F)/(HF)=K _{F1}	8)	= 陰イオンの総電荷 11)	
(HF ₂)/(HF)/(F)=K _{F2}	9)		
(H)(OH)=Kw	10)		

それぞれのイオンの半径(定数)である。これらの定数は理化学辞典などに掲載されている。下記のイオン強度⁴⁾を求める式にて、M_{conc}は個々のイオンの濃度で、M_{charge}はそのイオンの電荷である。Σはその 溶液に含まれているイオンの数(1からnまで)の総和を意味する。 このような場合、この16の連立方程式から27の未知量は計算できない。しかし次のようなループ計

Debye-Hückel の式: $-\log \gamma_i = [A \times (z_i)^2 \times \sqrt{I}] \div [1 + B \times r_i \times \sqrt{I}]$ イオン強度: $I = \sum [M_{conc} \times (M_{charge})^2]_n \div 2$

算を実行できるコンピュータソフトを用いて,活量係数(0<γ<1)の近似解を得ることができる。ループ計算の概要は以下のようである。まず活量係数を0~1の範囲の既知の値とみなして計算を行い,その未知量の近似解を得る。最終的には,近似解の有効数字(例えば3桁)が変動しなくなるまでループ 計算を行う。こうして得られた未知量の濃度と14の未知量の活量係数の近似解を正解とみなす。

こうして得られた近似解のうち, HA の構成イオンとなっているイオン種(Ca²⁺, PO₄³⁻, OH)の濃度と 活量から活量積[(Ca)⁵×(OH)¹×(PO₄)³]を計算し, その値を K_{HA}にて除し HA に関する飽和度(DS_{HA})を求 める。同様に FA の構成イオンとなっているイオン種(Ca²⁺, PO₄³⁻, F⁻)の濃度と活量から活量積 [(Ca)⁵×(F)¹×(PO₄)³]を計算し, その値を K_{FA}にて除し FA に関する飽和度(DS_{FA})を求める。

本章では HA と FA についての飽和度の計算方法を解説したが, 関連するリン酸カルシウム (DCPD, OCP, TCP) やフッ化カルシウム (CaF₂) についても, 同様な方法で飽和度が計算できる。

第6章: 脱灰液に含まれるミネラルイオンが脱灰に及ぼす影響

上述の飽和度の解説から、エナメル質の脱灰が pH だけで決まるわけではなく、共存するミネラルイオン (Ca²⁺やリン酸イオン)の濃度によっても強く影響されることが理解される。そこで実際にどの程度

の影響があるか, Margolis らの研究成果を紹介する ¹⁾。彼らは、プラークで酸が産生されている状態を インビトロで想定し、以下のような実験を行っ た。一定濃度の乳酸(100 mM)の溶液に、異なる 濃度の Ca^{2+} やリン酸イオンを添加し、pH を 4.3 に調 整した脱灰液(Aから F)を調製した(表 1)。こ の表にて、 DS_{EN} の値(指数表示)が小さいほど不飽 和度だ高く、脱灰する作用が強い。逆にその値が大 きいほど、脱灰する作用は弱まる。すべての脱灰

液にて DS_{EN} 値が1より小さい ので、脱灰が起きるはずである。

これらの脱灰液に, ヒトエナメ ル質試料を浸漬して3日間の脱灰 を行った。その後, この試料の切 片を作成し脱灰状態を偏向顕微鏡 で観察した(図1)。

その結果を<mark>表1</mark>の右端し示し た。結果を要約すると, ①ミネラ ルイオン濃度が低い場合, う窩状 表1 飽和度(DS_{EN})の脱灰病変の変化との関係

脱灰液	Ca(mM)	PO ₄ (mM)	飽和度: DSEN	結果
А	10.86	6.29	3.56×10-9	う窩(表層なし)
В	14.26	7.44	2.15×10 ⁻⁸	表層下脱灰
С	12.41	10.00	2.57×10-8	表層下脱灰
D	14.72	10.57	6.83×10 ⁻⁸	表層下脱灰
Е	26.92	10.75	1.24×10 ⁻⁶	脱灰認めず
F	34.97	10.70	4.11×10 ⁻⁶	脱灰認めず

乳酸イオン=100 mM, pH4.3

図1 エナメル質の脱灰に及ぼす低フッ化物濃度の影響 偏向顕微鏡による エナメル質切片(100 µm)の観察

の脱灰を呈した(脱灰液:A)。②ミネラルイオン濃度やや高くなると,表層下脱灰(図1の中央)を呈した(脱灰液:B,C,D)。その特徴は,表層の形成とその下層でミネラル密度の低下である。これはいわ

ゆる臨床的に観察されるホワイト・スポット(またが白斑)である(図2:筆者らの資料)。

筆者らは,図2で示した試料から 約100 μmの厚さの切片を作成し, そのマイクロラジオ画像

(Transverse Micro-Radiography:以下TMR 画像)を得た(図3)。暗く見える領域は,脱灰によりミネラル密度が減少した部分である。この画像では,隣接面と咬合面に初期う蝕病変が広く認められる。またエナメ

図2 広範囲に白斑を有す る臼歯の概観

図 3. エナメル質初期う蝕の TMR 画像 隣接面と咬合面の白色の矢印は表層下 脱灰。注)象牙質には隠れう蝕が認め られる。

ル象牙境の下部に強い脱灰領域が認められる。これを隠れう蝕とい う²⁻⁸⁾。この画像から,う蝕の進行過程が推察される。すなわち,う蝕 は表層下脱灰から始まり,実質的な欠損を伴うことなく脱灰は象牙質 に達する。さらに脱灰が進行すると,エナメル質表面の硬さが大きく 低下して何らかの外力でう窩が形成される。むろん隠れう蝕に至る 前に,エナメル質表面の硬さが大きく低下すれば,う窩に至ることも 考えられる。表層下脱灰を呈する病変は,ある一定の脱灰条件が満た されれば,人工的に(インビトロでも)作成できる(図4)。なぜ表 層下脱灰のような特異な脱灰病変が形成されるか,そのメカニズムに ついては,第11章で詳しく述べる。

図 4 人工的に作製された表層下 脱灰病変の TMR 画像:表層が 残ったまま内部が選択的に脱 灰された様子

③さらにミネラルイオン濃度が高くなると、エナメル質には全く脱灰像は観察されなかった(脱灰液: E, F)。これらの結果を総括すると、DS_{EN}の値が大きくなるに伴い脱灰程度は抑制され、ある値以上になると実質的に脱灰されなくなる。

この結果を、第4章の図1で示したコップのモデルを用いてもう一度考えてみる。これらの脱灰液の DS_{EN}の値は、ミネラルイオン濃度が高いほど大きい。つまり DS_{EN}の値が1.0に近いほどコップのカラ の体積が小さくなり、脱灰しにくくなることに対応する。これらの結果から、プラークまたは脱灰液中 のミネラルイオン濃度が高いほど、同じ酸濃度で、しかも同じ pH でも脱灰は顕著に抑制されることが分 かる。

ここで1つ指摘したいことがある。脱灰液EとFでは,DS_{EN}が1.0より明らかに小さい(すなわち不 飽和)にもかかわらず,どうして3日間後でも脱灰は観察されなかったか。これは,数10倍程度の光学 顕微鏡レベルでは,脱灰の兆候を示す変化は確認されなかった,換言すれば実質的な脱灰は認められな かったということである。電子顕微鏡のような方法を用いて,もっと精密な観察をすれば,脱灰の兆候 は認められたかも知れない。あるいはHAに関しては,過飽和に近い状態となり,エナメル質アパタイ トの溶解部位にHAが再石灰化沈着したかも知れない。筆者の経験によると,DS_{EN}の値が10⁻⁵レベルで も1ヶ月後において,数10倍程度の光学顕微鏡レベルでは実質的な脱灰は認められなかった。

このことから飽和度と脱灰程度(速度)との関係は、図5に示した概念図のようではないかと推察される。すなわち DS_{EN}の値が1.0未満~10⁵程度までは、非常に緩慢な脱灰速度となり、数日や1ヶ月後においても実質的には脱灰が観察されないが、それ以上の値では急激に速くなると推察される。

このように、ミネラルイオンがプラーク内に取 り込まれると脱灰が抑制される可能性が示唆される。 これに関し、以前からチーズなどの乳製品は、う蝕抑 制効果を有するとする多数の*in-vitro*研究が報告され いる。しかし実際の臨床試験の報告は、その実施の困 難さのため数は少ない。Ohlundらは、う蝕経験の少な い4歳児を対象に疫学調査を実施し、う蝕の罹患状況 と様々なパラメータ(チーズを含む飲食物の摂取状 況、ブラッシング習慣、プラークの付着状況、口腔内

細菌の状況,フッ化物の利用状況など)を調査し,多変量解析を行った。その結果,チーズ摂取頻度とう 蝕指数とのあいだで逆相関性を認めた⁹。また Jensen らは、①被験者のプラークに 10%の砂糖液を与え てプラーク pH の低下を確認後,チーズを食してもらうと低下したプラーク pH が有意に回復すること, ②被験者の口腔に,人工的に作製したエナメル質初期う蝕および脱灰象牙質を装着し,1 ケ月のあいだ, 摂取する食品にチーズを加えてチーズの影響を検討した。その結果,エナメル質初期う蝕の再石灰化の 促進効果および脱灰象牙質の進行抑制効果を認めた¹⁰。彼らは,この結果についてチーズは酸発酵性が 低いこと,あるいは酸の産生を抑制する効果があると推察した。同様に,Somaraj らも砂糖によって低下 した pH の回復効果を確認している¹¹⁾。このようにチーズの作用メカニズムとして,チーズに含まれる 高い濃度のミネラルイオンによる脱灰抑制および再石灰化促進作用以外に,様々な間接的作用(酸緩衝 能,唾液クリアランス作用,細菌付着への抑制作用)が示唆されている^{12,13)}。

ここまでは永久歯を用いた研究成果であるが、乳歯ではどうであろうか。一般に乳歯は永久歯より脱 灰されやすい(う蝕になりやすい)ことは、良く知られて事実である。Wang らは、乳歯は永久歯と比べ て約5.8倍もの高い脱灰感受性があることを報告した¹⁴。その要因として、ミネラル分の重量ベースに て乳歯では81.3-94.2 wt%であるのに対し、永久歯では約97%であることと関連していると考えられる ¹⁴。つまり乳歯では空隙率が永久歯より高い。そのためエナメル質表面からの酸(H+)の浸透性が乳歯 では高く、エナメル質内部まで酸が浸透しやすいことが第1の要因と考えられる。それ以外に、乳歯エ ナメル質では結晶性(その結晶の大きさや不純物の量)が低いことが関与していると考えられる。

ここでエナメル質と象牙質の臨界 pH について、少し解説する。エナメル質の臨界 pH は、5.3 付近と広 く認識されている。しかし本章で解説したように、エナメル質の溶解は、pH だけで決まるものではなく、 共存するミネラルイオン濃度やエナメル質の熱力学的溶解度積によって、かなり異なる。筆者らは、プ ラークに含まれるミネラルイオン濃度を用いた計算から、エナメル質の臨界 pH は 5.15 と推定した¹⁵⁾。 またエナメル質の熱力学的溶解度積の違い(分布)により、pH5.02~5.81 と推定した。

それでは象牙質の臨界 pH はどであろうか。Hoppenbrouwers らは、象牙質の臨界 pH は 6.7 と推定した ¹⁶⁾。その後、多くの論文でこの値が引用され、中性域の pH で象牙質は溶解が起きると、驚きをもって語 られるようになった。しかしこの推定値が得られた実験条件を詳しく吟味すると、実際の口腔ではこの pH では、脱灰は起きないのではないかと筆者には思えた。その理由を以下に述べる。この推定値には、 次のような 3 つの仮定条件が含まれおり、それらに留意しなければならない。①彼らは、50 mmol/L の 酢酸溶液に 0.42~7.50 mmol/L の CaHPO4 を溶解して、pH を 5.0~6.5 に調整した脱灰液を用いた。特に pH が 6.5 のときの CaHPO4 濃度は 0.41~1.35 mmol/L であり、これらの濃度はプラークに含まれているミ ネラルイオン濃度と比べると非常に低い¹⁷⁾。ミネラルイオン濃度が高いほど脱灰が起きる pH(臨界 pH)は低くなることは、本章で解説した通りである。このことから、プラークの影響下で脱灰が始まる pHは、この推定値より低いと考えられる。②脱灰に用いられた象牙質試料は一度も口腔内に露出された ものではないので、口腔内に露出している象牙質には必ずしも当てはまらない。象牙質も口腔に露出す ると、エナメル質の場合と同様、「成熟」という現象が経時的に起き、溶けにくい歯質に変化するはであ る。従って臨界 pHは、この推定値より低くなると考えられる。③彼らは、象牙質試料が溶解し始めた ときの I_{p(HA)} [HA に関する活量積; 105±0.4]を参考に臨界 pH を推定している。すなわち象牙質ミネラル の成分を HA と仮定している。しかし象牙質ミネラル成分の結晶性は、HA の結晶性より低い(すなわち 溶けやすい)。従ってこのような方法で、臨界 pH を推定することには、一定の制約が残る。

臨界 pH は酸に対する溶解挙動を考える場合,非常に分りやすい概念である。そのためエナメル質の 場合と同様,象牙質の臨界 pH の値でも上述の3つの仮定条件が無視されて,この数字だけが一人歩きを している。この象牙質の臨界 pH (6.7)では,安静唾液の pH の値(6から7)を考えると,根面象牙質 は,う蝕になる前に溶けてなくなってしまうのではないか。このようなことが臨床的に起きていない。 象牙質の臨界 pH を考える場合,注意が必要である。

筆者らも、象牙質の酸溶解性を検討するために、ヒ

ト象牙質の粉末を調製 して検討した¹⁸⁾。用い た脱灰液には,100 mM の酢酸と6種類の異なる 濃度のCaCl₂(Ca)と KH₂PO₄(P)が含まれる (表 2)。またこれらの 脱灰液のpHは6.0~7.4 のあいだで調整されてい る。これらの脱灰液に象 牙質粉末を1週間,撹

表2 脱灰の組成: Ca は CaCl2,

2.00 1.50 **`**Ca \mathcal{O} 1.00 溶 出 0.50 2 0.00 3 Ca (4)-0.50 \mathcal{O} 5 取 -1.00 込 H -1.506.0 6.2 6.4 6.6 7.0 7.2 7.4 6.8 脱灰液の pH

拌・浸漬し, 脱灰前と比べた Ca 濃度の変化を測定し
 た。その結果, 1) 脱灰液に Ca と P が全く含まれてい
 図 6 脱灰液に含まれるミネラルイオン濃度が象牙質の脱灰に及ぼす影響

(mM)

ない場合,または濃度が低い場合(①と②),pH7.0以上でも Ca が溶出した。この結果は,象牙質ミネラ ルには,アパタイト以外のリン酸カルシウムが含まれていることを示唆している。2)これらのイオン濃 度が高くなるほど,pH7.0以下(約6.4~6.0)でも Ca が取り込まれた(③,④,⑤,⑥)。Ca の取り込み を認めた条件では,HA に関して過飽和な状態であったため,石灰化が進行したと考えられる。これらの 結果から,象牙質が酸に溶解し始める pH は共存するミネラルイオン濃度によって異なることが示され, 固定した臨界 pH を想定することは,エナメル質の場合と同様,妥当ではないと考えられる。

さらにミネラルイオン濃度以外に、象牙質を試料とする場合、その構造的な多様性(管間・管周象牙 質、表層と内層、象牙細管など)や口腔内に露出した期間の長さ違いなど、エナメル質と比べて脱灰に及 ぼす要因が多数存在する。これらのことを勘案すると、特定の臨界 pH の値というものを想定してよい か、筆者は疑問を感じる。

第7章: 脱灰液に含まれるフッ化物イオンが脱灰に及ぼす影響

従来から信じられてきたフッ化物によるう蝕予防メカニズムは、比較的高濃度のフッ化物を塗布する ことで「耐酸性のフルオロアパタイト: FA がエナメル質表層に形成され、これが酸による脱灰を防ぐ」 という考え方が主流であったように思われる。従っていくら F 歯磨剤で歯を磨いても、そのあと直ぐに 水で口を漱いでしまえば、大部分のフッ化物は口から吐き出されて、FA として形成されないから、予防 効果は微々たるものと考えられていた。いわゆる「FA 説」であり、恐らく日本では多くの歯科専門家 が、今でもそのように考えているのではなかろうか。確かに「FA 説」は分りやすく、患者にも説明しや すく、学術図書でもそのような解説がなされている。果たしてそうであろうか。

本章では、この FA 説では説明できない脱灰抑制効果を紹介し、フッ化物の作用メカニズムを正しく理解してフッ化物の利用に役立ててほしいと思う。

その前に「FA説」生まれた背景を,筆者の想像も入れて推察する。1980年代の当時の日本では,FA

図1 フルオロアパタイトの形成による耐酸性説

は HA あるいはエナメル質より酸に溶けにくいことは、周知のことであった。このことを前提に、「FA 説」を図1で示したモデルを用いて解説する。まず3つの異なった試料を用意する。A(対照群)はフ ッ化物で処置されていないエナメル質,B(試験群1)はフッ化物(例えば APF)で処置されたエナメル 質,Cは純粋なFA(試験群2)である。これらの試料を同一条件で脱灰し、溶出した Ca²⁺またはリン酸 イオンを測定して3群の脱灰程度の比較を行う。その結果、対照群>試験群1>試験群2の順番で、脱灰 量は少なくなる。一方でその要因を考察するため、エナメル質に含まれる(あるいは取り込まれた)フ ッ化物の濃度を測定すると、対照群 < 試験群1 < 試験群2の順番で濃度が高い結果が得られる。

すなわち試料中のフッ化物の濃度が高いほど、高い耐酸性が得られる。また最も高い耐酸性を示した 試験群2のFAの結晶状態を機器分析し、FAはエナメル質結晶より高い結晶性(少ない歪みと不純物) であることを見出す。このような知見からこの実験を行った研究者らは、試料に含まれるフッ化物の濃 度が高いほどあるいはFAに近いほど、う蝕予防効果は高いと結論付ける。この結論から、エナメル質を 最も高いフッ化物含有のFAに変換すること(あるいは方法)が、理想的なフッ化物の利用法(ゴー ル)と結論付ける。これが「FA 説」の生まれた背景であろう。その結果,様々な方法でエナメル質にフ ッ化物を適用し,研究者はエナメル質がどの程度 FA に変換されたか機器分析し,FA 化率が小さい場合 は、う蝕予防効果が小さいと判断する。このような考え方が長く続いた。

FA の形成がう蝕抑制の達成にとって必ずしもゴールでない 1 例を示す。Ogaard らは、サメ由来のエ ナメル質試料 (100% FA)をヒトロ腔内に装着し、4 週間、試料表面のブラッシングを停止してプラーク を蓄積させて脱灰を誘発し、脱灰程度を検討した。その際、ヒト由来のエナメル質試料 (EN)と比較し た。またフッ化物洗口 (0.2% NaFを毎日使用)の影響も検討した^{1,2)}。4 週間後、各試料を取り出し、 TMR 法にて脱灰程度(深さ: μm と脱灰量: $vol%\cdot\mu m$)を評価し、比較検討した。その結果、ヒトエナメル 質試料では、脱灰深さは約 90 μm 、脱灰量は 1680 $vol\%\cdot\mu m$ であった。それに対しサメ FA 試料では、脱灰 深さは約 36 μm 、脱灰量は 965 $vol\%\cdot\mu m$ であった。一方、NaF 洗口の影響を受けたヒトエナメル質試料で は、サメ FA とほぼ同じ脱灰程度であった(図 2)。

この検討と平衡して、0.2% NaF 洗口を行った場合、 サメの試料表面にどの程度の CaF2様物質(第12章を 参照)が形成されたかも検討した^{1,2)}。その結果、サメ の歯では CaF2様物質は検出されなかった。なおヒト エナメル質では、CaF2様物質が形成されることを以前 の検討で確認している。CaF2様物質の形成は、フッ化 物の効果を推定する一種のマーカーであり、歯質表面 で多量に形成され長く存在しているときは、フッ化物 の効果は高いと考えられている。CaF2様物質は FA と

異なり, 唾液に少しずつ溶け出る性質がある(FA は中性領域では唾液に不溶)。そのため, いずれこの物質は消失してしまうが, そのあいだ, Fを口腔内に徐放して, 脱灰抑制と再石灰化促進の作用を発揮する重要な沈着物である。サメ FA の場合, CaF2 様物質が形成されなかったことは, そのような 2 つの作用が十分発揮されなかったと考えられる。

以上の結果から, 彼らは以下のような推測をした。

①サメ FA といえどもプラーク·コントロールを行わなかったら、比較的短期間(4週間)で脱灰され

る。このことから, 仮にヒトエナメル質を FA に変換しても, 脱灰抵抗性には一定の限界がある。

②フッ化物洗口(0.2% NaF)は、効果的に脱灰を抑制する。これは、毎日フッ化物が供給されるからである。この結果はF歯磨剤や洗口剤など、高頻度で使用する前提の根拠となる。

③フッ化物洗口の効果が発揮されるには、CaF2様物質の沈着形成が必須である。

なおフッ化物の作用メカニズムとして、CaF2様物質の沈着形成が重要であることは知られているが、 それだけではないことの1つとして、「プラークへのフッ化物の取り込みの重要性」について第8章で 言及する。以下に、近年の研究で明らかになった FA 耐酸性説とは異なるメカニズムを紹介する。筆者 はこのメカニズムにより、F 歯磨剤やF 洗口剤などの予防効果が科学的に説明できると考えている。

Margolis らは、プラーク内で酸が産生されている状態をビーカー内でモデル化した実験を行った³⁾。 すなわちプラーク内に存在するミネラルイオン(Ca²⁺、リン酸イオン)と同じような濃度のミネラルイ オンと 100 mM の乳酸を含む pH4.3 の脱灰液を調製し、さらに表 1 に示す A)から G)の 7 種類の異なる濃 度のフッ化物イオン(F:0.004~1.004 ppm)を添加し、そこにヒトエナメル質試料を浸漬した。第6章の図1の結果の場合と同様に、3日後にこの試料から薄切片を作製し、その断面を偏光顕微鏡にて脱灰状態を観察した。その結果を同表に示す。同表の「試料の数」とは各脱灰液にて浸漬したエナメル質試料の数である。ここで、「う窩」とはエナメル質表層に実質欠損を伴った脱灰病変、「表層下脱灰」とはエナメル質表層が残されたまま内部で脱灰が起こった病変、「脱灰なし」とは見かけ全く脱灰を呈しなかったものである。この順序は脱灰の程度の順番と考えてよい。

F濃度が最も低い場合(A)では,18 試料のうち,16 試料が「う窩」に,2 試料が「表層下脱灰」に,そして「脱灰なし」の試料数は0であった。F濃度が少しずつ増していくと,「う窩」を呈した試料の数が減少し,その反面,「表層下脱灰」を呈した試料の数が増加した(BからE)。F濃度が0.504 ppm

(F) に増加すると, 10 試料のうち8 試料が「脱灰なし」となり, さらに F濃度が最大の 1.004 ppm (G) に増加すると, 12 試料の全てが「脱灰なし」となった。

これらの結果は,1 ppm 以下 の低濃度 Fでも常時プラーク内 に存在していれば,脱灰は強く 抑制されることを示唆してい る。実際,フッ化物配合歯磨剤 (以下 F 歯磨剤)を使用した直 後の唾液やプラーク内での F 濃 度は数 10 ppm であるが,数時 間後には 0.1 ppm 前後まで低下 する⁴⁻⁷。この結果は,日々数 回の F 歯磨剤の使用により,う

脱灰液	試料の数	F ⁻ , ppm	う窩	表層下脱灰	脱灰なし	DS(FA)
A)	18	0.004	16	2	0	0.7
B)	15	0.009	8	6	0	1.6
C)	10	0.024	2	8	0	3.7
D)	10	0.054	1	9	0	8.3
E)	10	0.154	0	9	1	28.5
F)	10	0.504	0	2	8	96.8
G)	12	1.004	0	0	12	187.0

表 1. エナメル質の脱灰に及ぼす低濃度フッ化物イオンの影響

脱灰液の組成; CaCl₂=11.7mM, KH₂PO₄=6.0mM, lactic acid =100mM, pH=4.3

触予防が可能であることを示唆している。通常,一般の人ではプラークをブラッシングだけで完全に除 去することは困難である(特に隣接面や交合面の深い溝)。ましてや子供の場合はそうである。F歯磨 剤を使用すれば,磨き残しのプラーク内にも0.1 ppm 前後の濃度のFは十分残存できる。このようなこ とから,必ずしも完全なプラーク除去ができなくとも,F歯磨剤を毎日使用することで一定のう触予防効 果が達せられる。

筆者らも同様な実験法にて、F濃度(0.0003~20 ppm)が脱灰に及ぼす抑制効果を再検討した⁸。上述の実験では、ミネラルイオン濃度は固定され(すなわち DS_{EN} の値は固定)、F濃度の影響を検討した実験であった。筆者らの実験では、 DS_{EN} の値を 10^{-14} から 10^{-6} まで変化させ場合のF濃度の影響を検討した(DS_{EN} とF濃度について不完全な二元配置)。この検討には2つの目的があった。第1は、脱灰条件が非常に強い場合(10^{-14} ~ 10^{-11})、どの程度のF濃度で脱灰が抑制できるか。

第2は逆に、脱灰条件が非常に弱い場合($10^{-8} \sim 10^{-6}$)、どの程度の極微のF濃度で脱灰が抑制できるか。DS_{EN}の値は、脱灰液に添加するミネラルイオン濃度(CaCl₂とKH₂PO₄)および pH($4.11 \sim 4.30$)を調整することで設定した。表2に示した極微のF濃度($0.003 \sim 0.0007$ ppm および $0.001 \sim 0.004$ ppm)とは、F(NaF由来)を添加したのではなく、原料(CaCl₂とKH₂PO₄)に不純物として含まれるFを、HA粉末で吸着除去した後に残ったF濃度である。また横軸に示したF濃度は、実際には端数を伴う測定値

であり、そのまま測定値を表記すると煩雑となるので、その測定値の近辺の値として表示した。表の縦軸は、DSENの値の指数ごとに示した値である。

			表 2 エナ	メル質脱層	灰に 及ぼす	一溶液中の	低濃度F	ற		
灰後の結果を				前应	液由の F-濃	唐度 (mm)		.,		
同表2に示し			0.001	106/2八1	収工ッチ	چک (ppm))	• •		
	DC	0.0003~	0.001~	0.1	0.5	1.0	2.0	2.0~	4.8	20
た。この表に	DS _{EN}	0.0007	0.004					5.0		
示した数字	10-14	9:0:0				9:0:0		9:0:0	9:0:0	9:0:0
(9:0:0 な	10-11		9:0:0			9:0:0	9:0:0	9:0:0		0:0:9
ど) は,9 試	10-10		9:0:0	9:0:0	0:9:0	0:6:3		0:0:9		
料のうち左か	10-9		9:0:0			0:2:7				
こ「う宿」を	10-8	1:8:0	2:7:0							
	10-7	0:6:3	0:5:4							
呈したエナメ	10-6	0:2:7	0:1:8							
ル質試料数										

中央は「表層

3日間の脱

下脱灰」を呈した試料数,右は「脱灰なし」を呈した試料数である。

脱灰条件が非常に強い場合 ($DS_{EN} = 10^{-14}$), 20 ppm の F濃度でも全く脱灰抑制効果は認められなかっ たが、この条件がやや緩和されると ($DS_{EN} = 10^{-11}$), 20 ppm にて明瞭な脱灰抑制効果が見られた。脱灰 条件がさらに緩和されると ($10^{-10} \sim 10^9$), 1 桁 ppm 以下の F濃度範囲内で、その濃度に応じて脱灰抑制 効果が見られた。しかし脱灰条件が弱くなると ($10^{-8} \sim 10^{-6}$), もはや極微の F濃度 (0.004 ppm 以下の 範囲内: 同表では点線の四角で囲まれた条件)の影響は明瞭には観察されなくなった。しかし DS_{EN} そ のものの影響は顕著であり, DS_{EN} の値が 1 桁大きくなるごとに脱灰は強く抑制された。

表2の結果は、総じて表1で示した結果と同様な傾向を示した。しかしFによる脱灰抑制効果は、 DS_{EN}の値によりかなり異なることが示された。すなわち脱灰傾向が強い場合、これを抑制するには高い 濃度のFが必要となる。これに反し脱灰傾向が非常に弱い場合、Fによる脱灰抑制効果が発揮される最低 濃度は、この実験条件では明らかにすることはできなかった。

後者の結果は、フッ化物によるう蝕予防効果を評価する臨床試験において、う蝕感受性の低い被験者 (脱灰傾向が弱い被験者)が多く含まれると、フッ化物の効果が検出できない可能性を示唆している。 フッ化物の利用は、全ての人に推奨される。しかし臨床試験の場合は、有効性の結果を検出する効率性 を考えなければならない。臨床試験の実施者は、この点を考慮しておく必要がある。

それでは、なぜそのような低濃度でも脱灰が抑制できるのか、表1をもとに解説する。上述したよう に脱灰が起きる理由は、エナメル質表面と接している液体(酸とミネラルイオンを含むプラーク液)が エナメル質アパタイト(以下 EN)に関して不飽和であるからである。すなわちどの脱灰条件(A~G) でもエナメル質は脱灰される。一方で Fが存在すると、プラーク液は FA に関して過飽和になる。表1 の右端の欄に記載してある DS(FA)は、FA に関する飽和度を計算した数値である。脱灰条件 A を除いて DS(FA)の値は 1.0 より大きい。すなわち B から G の脱灰条件では、FA に関して過飽和である。そして F 濃度の増加とともに、その過飽和度は大きくなる。このような条件下では、一方で溶解し、他方では FA が沈着するという、「脱灰と再石灰化が同時に進行する」現象が起きている。言い換えれば、F 濃度 に関係なくエナメル質は溶解するが,F濃度に応じてFAの沈着(この場合は,酸性下の再石灰化)が同時に進行している。

図3を用いて、もう少し詳細に考察すると、次のような現象が起きていると考えられる。①F濃度が非常に低い場合(0.01 ppm レベル以下)、

脱灰が優位となり「う窩」となる。②F -濃度が中程度の場合(0.01~0.5 ppm), 脱灰の進行に対し,再石灰化がある程 度拮抗し「表層下脱灰」となるケース が現れる。③F濃度が高い場合(0.5 ppm以上),脱灰と再石灰化が拮抗し (または再石灰化が優位),見かけ

「脱灰なし」となる。我々がフッ化物

による耐酸性効果と考えているメカニ

図3 エナメル質の脱灰に及ぼすフッ化物濃度の影響

ズムは「エナメル質の脱灰によるミネラルの損失量とFによるFAの沈着量の"差"」であることを理解 してほしい。この研究の眼目は、Fによる脱灰抑制効果は決してFAの形成による耐酸性という考え方で はない。むしろFAの形成は、脱灰抑制の原因ではなく、抑制ができた結果(FAの形成)である。それ では図1で解説したFAの形成による脱灰抑制メカニズム(FA説)と、表1の結果を説明するメカニズ ムとのあいだに、どのような関連性があるか考えてみる。

FA 説を解説した先の図1において、フッ化 物で処置されたエナメル質試料およびFA 試 料が脱灰抵抗性を示した理由を、図4を用い て説明する。フッ化物処置でエナメル質(図 4のB)に取り込まれたフッ化物は、その化学 的状態が何であれ、F(イオンのかたち)とし て脱灰液に溶け出す。同時に Ca²⁺とリン酸イ オンも溶け出す。すると脱灰液は、FA に関し て一定の過飽和状態になる。その結果、「エ ナメル質の脱灰」と「FA の沈着(一種の副 反応)」が同時に起こり、これが脱灰抑制効 果として評価される。FA 試料の場合も同様

のメカニズムである。すなわち FA も脱灰液で一部溶解し, Fが脱灰液に溶け出し, これが脱灰抑制効果 を担う。この場合の FA は, Fを口腔に供給する一種の貯留サイト(reservoir)と見なすこともできる。 なお FA そのものも, エナメル質あるいは HA と同様に, 酸に溶解しやすいという事実については, 本章 の後半で解説する。

現実の口腔内では、歯質やプラークに取り込まれたFは唾液などで洗い流され失われる。従って、こ こで解説したような作用メカニズムが発揮されるには、毎日、F歯磨剤やF洗口剤を使用することで、低 濃度でもよいので、常時Fが供給される必要がある。 ところで図 3 で解説した「FA が沈着する」ということが本当に起こっているか、という疑問が湧く。 そこで彼らは次のような追加実験を行って、その左証とした。すなわちエナメル質歯面に"window"を設 定し、この部分を除いてすべての歯面をマニキャで覆った。その後、1 ppm Fを含む脱灰液(CaCl₂=11.7 mM, KH₂PO₄=6.0 mM, 乳酸 = 100 mM, F = 1 ppm, pH4.3)に10日間浸漬した。次いでエナメル質に取り 込まれたフッ化物を分析した。コントロールとして、脱灰液の代わりに蒸留水に浸漬したときのフッ化 物を分析した。その結果、1 ppm Fを含む脱灰液に浸漬した場合、コントロールの場合より明らかに高い 濃度のフッ化物が検出された(図 5)。この図の数値の単位は、"window"の面積(8.2 mm²)において、 深さ 3.5 µm までの層に取り込まれたフッ化物量(mg F)である。

彼らは,取り込まれたフッ化物が純粋なFAのかたちで存在 している証拠を示していないが,このような低濃度のFとエナ メル質との反応で形成されるリン酸カルシウムは,熱力学的に 最も安定な結晶系であるFAに類似した結晶以外,知られてい ない。このようにFがFAという結晶の構成イオンとして存在 しなくても(すなわち,プラークなどの溶液に存在するだけ で),十分脱灰が抑制できることが示された。

「ここで言う純粋な FA ではない」の内容を少し詳細に説明す ると、この FA は結晶学的に完全な FA [(Ca)₅(F)(PO₄)₃]ではなく、 HA の OH が部分的に置換したもの「例えば、

図 5 脱灰中に取り込まれたフッ化物濃度

(Ca)₅(F)_{0.3}(OH)_{0.7}(PO₄)₃」である。場合によっては, HAの Caの

部位に Mg や Na が, OH の部位に CO₃ や HPO₄ が, PO₄ のところに CO₃ や HPO₄ に置換されたフッ化物含 有アパタイトである。逆に言えば純粋な FA は人工的な化学的条件でないと合成できない。しかしこの ような完全ではないフッ化物含有アパタイトであってもエナメル質と同じの硬さと外観を示すので, エ ナメル質の歯質として全く問題はない。

それでは、そのような極めて低濃度(サブ ppm レベル)の下でもなぜ高い脱灰抑制効果が得られるの か。それは、この脱灰液が FA に関して過飽和であるからと前述した。このことを別の視点から見ると、 HA の構成要素である「OHと水素イオン(H⁺)との結合性」そして FA の構成要素である「Fと H⁺との 結合性」に関して、両者で化学的性質が大きく異なっていることからも説明できる。すなわち脱灰が起 きる酸性下では、OH⁻は H⁺と反応して H₂O(水)となり、OH-濃度は著しく低下する(式 1)。これは H⁺に 対する OH の結合力が極めて強いからである。それに対し、「H⁺に対する F の結合力はそれほど強くな い」(式 2)。そのため酸性下では、F は OH⁻に比べて圧倒的に多く存在できる。わずかではあるが、生成 した HF に F が結合する反応も知られているが、その反応は HF 生成よりはるかに少ない(式 3)。この

1) $OH^{-} + H^{+} \rightarrow H_{2}O$ (この結合反応は極めて強く, 弱酸性域では OH はほとんど消失)

2) \vec{F} + $H^+ \rightarrow HF$ (弱酸性域ではほとんど結合しなく,Fは遊離したイオンとして温存される) 3) \vec{F} + $HF \rightarrow HF_2^-$

ような違いにより,エナメル質に関しては不飽和となるが,FA に関しては過飽和な状態が維持できる。 もしFにそのような化学的性質がなかったら(OH と同様であったら),フッ化物にう蝕予防効果は発 現しない。これは自然界における偶然の恩恵の1つである。米国の著名な研究者は,フッ化物(神)は 自然からの恩恵であると述べた。 「H⁺に対するFの結合力はそれほど強くない」というFの性質に関連して図6を見て欲しい。これは

pH が異なった場合, Fとして存在できる割合を示した図である(フッ素イオン電極の使用書から転記)。脱灰が起きる pH 範囲内(pH4~5)でも80%以上のフッ化物がFイオン として存在できることを示している。

このことを、簡単な数字を用いて以下に解説する。例えば 脱灰液(あるいは酸を産生しているプラーク)の pH が 4.5 とする。またその状態に Fが存在しているとする(0.1, 1.0, 10.0 ppm)。これらの ppm 濃度をモル濃度(mol/L)に変換 する。pH4.5 での OH 濃度は、水のイオン積の関係式(Kw = (H⁺)×(OH) = 10⁻¹⁴)から、10^{-9.5} mol/L となる。従って Fと OH の割合(F÷OH)は、表 3 に示したようになる。この ことから、非常に低濃度の Fでも OH 濃度と比べれば、圧倒的 に高い割合で Fは存在でき、その結果、FA の形成に関して HA よりはるかに優勢となる。

ここで FA について幾つか補足説明をする。純粋な FA は,

比較的高い温度と高い pH の条件下で合成される。そのような条件は,我々の口腔内では有り得ない。 生理的条件下(37℃, pH 中性付近,1気圧)では,先に述べたように,部分的に置換された不完全なフッ

化物含有アパタイト(fluoridated apatite)しか生成 されない。それでは、そのような不完全なフッ化物 含有アパタイトと純粋な FA とで、どの程度の溶解 性の違いがあるのであろうか。

Moreno らは、置換度の異なるフッ化物含有アパ タイトを合成し、異なる pH 環境下での溶解性を検 討した⁹。化学式で表記すると、下記 4)のように 書かれる。x がゼロのとき純粋なハイドロキシアパ タイト (HA) であり、1 のときが純粋なフルオロア パタイトである。

4) (Ca)₅(OH)_(1-x)(F)_x(PO₄)₃ $(0 < x \le 1)$

その結果,奇妙な溶解性が認められた(図7)。

pH5 の場合, 純粋な HA (x = 1) のときに最も低い溶解性を示した。この場合, 置換率 0% と 100% で溶解 性の差は, 約 6 倍 (約 60 ppm, 10 ppm) であった。一方, 大きな溶解性の差ではないが, pH7 と pH6 のと き置換率が 0.4 付近で最も低い溶解性を示した。置換率が 1.0 のとき, 最も溶解性が低くなるのは, ここ では pH5 の場合であった。

その後 2007 になって, Pan らは新しく開発された別の方法(solid titration 法)にで,純粋な HA と FA の酸溶解性の比較実験を行った¹⁰。この方法は以下のようである。ガラスビーカー内に HA または FA 粉末を分散させ,ビーカーの壁面にレーザービームを照射する。粉末が存在すると,レーザー光は散乱 を受け,照射側と反対側に設置した検出器で検出される光強度は,入射光より弱くなる。粉末が酸によ

表 3 pH4.5 での F と OH の濃度の比較

F (ppm)	モル濃度 (mol/L)	$F \div OH$
0.1	5.3×10 ⁻⁶	16,000 倍
1.0	5.3×10 ⁻⁵	160,000 倍
10.0	5.3×10 ⁻⁴	1,600,000 倍

図7フッ化物含有アパタイトの酸溶解性

って溶解すると、レーザー光は散乱を受けず、入射光と同じ強度で検出される。この原理を利用して、ビ ーカー内の溶液の pH を所定の値に設定し、アパタイト粉末の溶解性と pH の関係を検討した。

その結果は予想外のものであった。その結論は、少なくとも pH3.0 付近から 5.0 のあいだでは、HA と FA のあいだで酸溶解性に際立った差は存在しない、というものであった。図8にて「•: FAp+wax」ある いは「•: HAp+wax」と表示してあるものが、純粋な FA あるいは純粋な HA の場合である。wax とは、 ガラス容器の壁と Fとの反応が起きないよう、その壁に wax を塗ったことを意味する。

縦軸は溶解した HA または FA のモル濃度

(mol/L)の対数表示である。なお図8に示した他の3種類の記号は、実験をより厳密に行うために装置の エ夫を行った場合のデータや参照データである(こ こではそれには言及しない)。これまでFAはHAよ り酸溶解性が低いと考えられてきたが、必ずしもそ うではないことが示された。先の Moreno らの古典 的な方法(反応が平衡に達するまで溶液 pH やミネ ラルイオン濃度の測定;例えば本章の図7で示した 値および第4章の表2で示した値)と、当時は知ら れていなかった solid titration 法とでは、結果がかなり 異なった。恐らく solid titration 法において、次に述べ るような誤差が少なく、正しい測定法かも知れな

い。すなわちこの方法では、用いる酸の溶液の量(体積)と比べて、用いる FA 粉末の量は極めて少ない ため、FA から溶け出た Fによる F濃度の上昇は無視できる程度となる。従って、図4 で示したような FA から溶け出た Fによる脱灰抑制作用という副反応が起きない。

エナメル質あるいは象牙質う蝕に関連して, 我々が念頭に置くアパタイトには, 酸溶解性の面から 種々のものが考えられる。①もともとのエナメル質アパタイト, ②Fの影響を受けないで再石灰化した エナメル質アパタイト, ③Fで部分置換された置換エナメル質アパタイト, ④純粋な HA, ⑤純粋な FA, ⑥もともとの象牙質アパタイト, ⑦Fの影響を受けないで再石灰化した象牙質アパタイト, ⑧Fで部分置 換された置換象牙質アパタイトなどである。

これらの酸溶解性の序列を同一条件で評価した研究論文は見当たらないが,アパタイトの結晶性と酸 溶解性とのあいだに一定の相関性があるとすると,以下のように推察される。

象牙質: もともとの象牙質アパタイト> Fの影響を受けないで再石灰化した象牙質アパタイト> F で部分置換された象牙質アパタイト エナメル質: もともとのエナメル質アパタイト> Fの影響を受けないで再石灰化したエナメル質ア パタイト> Fで部分置換されたエナメル質アパタイト> 純粋な HA≧ 純粋な FA

再石灰化の影響を受けた F置換の歯質アパタイト自身は、置換されない場合より脱灰されにくい性質 に変化することは確かである。その理由は以下のように説明される。前述したように、置換される前の (もともとの)歯質アパタイトには Mg や炭酸イオンなどの不純物がかなり含まれており、結晶性が低 いため酸に溶解しやすい。しかし脱灰と Fによる再石灰化の影響を受けると、これらの不純物の少ない フッ化物含有アパタイトに変化するはずである。このアパタイトは結晶性が改善されているので、より 酸に溶けにくい性質を獲得する。またこのフッ化物含有アパタイトがプラーク液に溶けたとき、Fが放出 され脱灰を抑制する。ここで推察した内容が確かであるか文献調査を試みたが、残念ながら該当する論 文は見出すことができなかった。しかしこの推察を支持する研究は、部分的ではあるが報告されてい る。Lijima らの研究を紹介する。

彼らは、初期う蝕の白斑を有する抜去歯の切片(サンプル)を口腔内に2週間装置し、この期間、サンプルに脱灰が進行するようプラーク除去の停止と砂糖液の適用を行った。比較のため、同一サンプルの白斑近傍の健全エナメル質についても、脱灰が進行するよう同様な操作を行った。その後、サンプルを取り出し、脱灰病変の変化(脱灰深さ:μmとミネラルの溶出量:vol%·μm)をTMR法で評価した¹¹⁾。

その結果, 白斑近傍の健全エナメル質と比 べて, 白斑部位では高い脱灰抵抗性が示さ れた(図9)。すなわち白斑では, 脱灰前の 脱灰量(vol%·μm)と脱灰後の差(青棒: 1,482)であった。それに対し近傍の健全エ ナメル質では, その差(青棒: 2,688)であ った。また脱灰深さ(μm)の増加も白斑に て少なかった(オレンジ棒:白斑で 390, 健全面で 1,110)。

このように白斑での脱灰抵抗性は,白斑 の表層は脱灰と再石灰化の影響を受けて, エナメル質の結晶性の改善あるいはフッ化

図 9 口腔内での脱灰進行度について白斑歯と健全歯の比較

物を含むアパタイト結晶に変化したことによると推察される。白斑の場合の代表的なミネラルプロファ イルを図 10A に,白斑近傍のエナメル質の場合は,図 10B に示した。白斑の場合,表層でのミネラル密

度は,脱灰によってほとんど変化は見られず,また脱灰深さの増加もあまり顕著ではない。脱灰は,ミネ ラル密度の低い領域が深まるかたちで進行している。それに対し近傍エナメル質では,エナメル質表層 のミネラル密度は維持されつつも,内層全体でミネラルの溶出が起きている。 また彼らは、人工的に形成したエナメル質初期う蝕サンプルを口腔内に装置し、一定期間の再石灰化 処置を行い、その後、このサンプルを取り出し、実験室にて一定の条件下にて脱灰抵抗性を評価した。こ こで採用した再石灰化処置は、有効成分として「カゼインとアモルファスリン酸カルシウム含有のチュ ーイングガム」¹²、または「お茶由来のフッ化物含有のチューイングガム」¹³の使用である。その結果、 有効成分を含まないガムを使用した場合と比べて、これを含む場合において高い脱灰抵抗性が認められ た。これらの結果は、脱灰歯質が再石灰化することにより、酸抵抗性を獲得したと解釈される。

第8章:プラークに取り込まれたフッ化物の効果と動態

これまで述べてきたように、フッ化物と歯質アパタイトとのあいだには幾つかの相互反応が知られて いる。繰り返しとなるが、①静電的相互作用で歯面に Fが吸着する。②歯質内に浸透して取り込まれ る。③健全歯面あるいは初期う蝕病変内にフッ化カルシウム(CaF₂)様化合物として沈着する。これら のフッ化物は、濃度勾配の原理あるいは唾液やプラークに存在する陰イオン(Cr, HPO₄²など)によるイ オン交換の原理に従って、さらに CaF₂様物質の溶解性の特性に従って、唾液やプラークに除々に供給さ れ、脱灰抑制と再石灰化促進作用を発揮すると考えられている。これらのメカニズムによる脱灰抑制お よび再石灰化促進作用は、多くのモデル実験で検証されている(第7と13章を参照)。こうした研究が、 これまで多数を占めてきた(詳細は第12章)。

しかしながらフッ化物配合の歯磨剤(以下F歯磨剤)や洗口剤(以下F洗口剤)などの製剤を使用し たとき、フッ化物は歯質以外にプラークにも取り込まれることが、下記で述べるように知られている。 それでは、歯質とプラークとどちらに取り込まれたフッ化物が、より有効にう蝕予防効果を発揮するの であろうか、との疑問が湧く。通常、う蝕は隣接面や咬合面の小窩裂溝あるいは矯正装置の隙間などプ ラーク除去が困難な部位で発症しやすい。従ってプラークで覆われた部位でもフッ化物が有効性を発揮 しなければ、臨床的意義は小さい。F 歯磨剤を用いてブラッシングする場合、このようなプラーク滞留サ イトに蓄積したプラークを完全に除去することは困難であるが、除去できなかったプラークにフッ化物 が取り込まれることは十分考えられる。Zero らは、F 歯磨剤やF 洗口剤を使用した後、 プラークを採取し てプラークに取り込まれたフッ化物濃度を経時的に測定した。その結果,2時間まではフッ化物製剤を使 用する前と比べて明らかに高い濃度が検出され、その後、減少したが24時間後でも高い傾向を認めた ¹⁾。また日中にフッ化物製剤を使用して、数時間経た場合の濃度と比べて、就寝前に使用して翌朝に検出 される濃度の方が高かったとも報告している¹⁾。F洗口剤の使用の場合では、必ずしもプラーク除去を前 提としていないが、プラークが存在していてもう蝕予防効果を発揮することが想定されている。以下で 述べるようにプラークは、ある意味でフッ化物の蓄積場所であると同時に、フッ化物を徐放する部位で もあると考えられる。すなわちプラークの存在はう蝕発症リスクでもあるが、フッ化物の滞留場所とし てそのリスクを低下させているかも知れない。果たしてそのような視点は正しいのであろうか。

その前に、プラークに取り込まれたフッ化物(以下、プラークF)の特性や挙動に関して、これまで報告されてきた知見の概要を以下に解説する。まずプラークFの分類と濃度の測定方法の概要を述べる。 採取したプラークを10,000程度の回転数で遠心分離すると、沈殿相の細菌と液体に分離する。細菌はプラーク全体の体積の約70%を占める。残りの約30%は自由水でプラーク液と呼ばれ、その液体には石灰化物の成分である Ca²⁺やリン酸イオンあるいは脱灰を引き起こす各種の有機酸、さらには種々のアミノ酸も含まれ、そこにFも存在す^{2,3)}。沈殿相には、水で抽出できるフッ化物と水では抽出できない(非水 溶性)のフッ化物が存在する。

一方で、遠心分離をすることなくプラーク全体に含まれるフッ化物の全量を全フッ化物量という。こ の全フッ化物量には、少なくとも3種類の化学的に異なった状態のフッ化物が含まれる。第1は水で簡 単に抽出されるもの, 第2に乳酸などの弱酸(pH4~5)で抽出されるもの, 第3に強酸である 0.5N 程度 の過塩素酸(HClO₄)で抽出されるものである。このように、目的に応じて抽出処理されたフッ化物を 含む試験液に、通常、TISAB (Total Ion Strength Adjusted Buffer) と呼ばれる試薬液を加え、フッ素イオン 電極法にてその濃度を測定する。TISABには次の3つの機能がある。①TISABには高い濃度のイオン性 物質が含まれ、これを試験液と標準液に一定量加えることで、両者の液のイオン強度を同じレベルに合 わせる。②TISAB には強いキレート化合物が含まれ、多価陽イオン(Ca²⁺, Mg²⁺, Al³⁺, Fe³⁺などの金属イ オン)と強く結合した金属フッ化物をキレート化して、これら金属イオンとイオン性のFに分離させ る。ただし TISAB を使用すると、脱灰抑制や再石灰化促進に直接的には寄与しない、これら多価陽イオ ンに結合したフッ化物も測定してしまうので、注意が必要である。直接寄与するのは、イオン性の Fの みである。③TISABには、強い pH 緩衝作用のある化合物が含まれているので、試験液と標準液の pH を ほぼ同じレベル(約 pH5.0-5.5)に合わせることができる。このように、試験液と標準液の化学的状態を 同じようにすることで測定誤差が少さくなり、フッ化物(F)の濃度を正確に測定することができる。 ちなみにフッ素イオン電極で、モノフルオロリン酸ナトリウム(MFP)のF濃度を測定する場合、まず MFP を強酸または強アルカリで加水分解してから TISAB を用いて分析する。

Tatevossian は、いくつかの論文をレビユしてプラークに含まれる全フッ化物量は、湿重量として 5~10 ppm と推定した 4)。フッ化物による脱灰抑制作用および再石灰化の進行には、必ず FA の形成を伴う。そのためには完全にイオン化したフッ化物 (F) 濃度が重要となる(第4章を参照)。FA の形成に直接関与する Fの濃度について、彼は全フッ化物量の 5%程度と報告している(すなわち 0.25~0.5 ppm) 4)。一方、Margolis らは平均 0.076 ppm と報告している 3)。両者のあいだでかなりの隔たりがある。これは、プラークの採取条件(フッ化物摂取の履歴やプラークの部位など)や測定条件(フッ化物の抽出条件など)の違いに起因する。しかしながらこのような低い F濃度でも、酸が産生されていないプラークの pH (約 6.5) では、理論的に十分に FA に関して過飽和になっているので、FA の形成は可能であり、脱灰抑制あるいは初期う蝕の再石灰化に寄与するはずである。

一方, プラークが石灰化したものが歯石と言われるように, 比較的新しいプラークでも幼弱石灰化物 (種々のリン酸カルシウム)が存在する場合があり⁹, Fはこの石灰化物に吸着している可能性も考えら れる。歯石については, 筆者による「歯石? もう一度見直してみよう, この不思議」を参照して欲し い。

それではプラークFは、ほんとうに脱灰の抑制効果を発揮するのであろうか("仮説")。発揮するとしたら、どのような実験方法を採用すれば、その"仮説"は証明されたことになるか。この疑問に答えた興味ある基礎研究を以下に紹介する。Tenutaらは、図1に示すような実験デザインを採用して、この仮説の妥当性を明らかにした⁶。彼らは、被験者を大きく3つの実験群(図1のA,B,Cの3つのグループ)に分けた。Aでは、まず試験歯磨剤(F無配合、500、1100 ppmの3つのサブグループを含む)の水スラリーにて牛エナメル質試料片(以下、試料片)を口腔の外で5分間処置し、軽く洗浄した後、直ちにこれを人工プラークで覆い、上顎の口蓋に装着した。この人工プラークは、S mutans Ingbrid-1600 株を培養し、

遠心分離して同菌を濃縮し、これを用いた擬似プ ラークである。Bでは、口腔の外では試験歯磨剤 処置を行わず、試験歯磨剤にて自分の歯を口腔内 で1分間ブラッシングし、その唾液スラリーを吐 き出し、口漱ぎを行わず、直ちに人工プラークで 覆われた試料片を口腔内に装着した。CではAと 同じように、まず試験歯磨剤のスラリーにて試料 片を口腔の外で5分間処置し、軽く洗浄した後、 これを人工プラークで覆い、直ちに人工プラーク で覆われた試料片を口腔内に装着したまま、もう 一度Bの場合と同じように、試験歯磨剤にて自分 の歯を1分間ブラッシングし(試料片には直接ブ ラッシングは行わない)、その唾液スラリーを吐 き出し、口漱ぎを行わなかった。

装着30分後に、人工プラークと試料片(各処置

図1 プラークに取り込まれたFの有効性を検証する実験群

条件ごとに試料片の1部)を口腔から取り出し,人工プラークに取り込まれたフッ化物濃度を測定した。また口腔内に残された試料片に対して,これを脱灰させるため20%の砂糖液の含漱を1分間行い,45分後(装着後75分)に人工プラークと試料片を取り出して,プラークに残されたフッ化物濃度の測定と 試料片の硬さ(脱灰程度)を測定した。プラークに取り込まれたフッ化物は,これを遠心分離して得ら れた液体(プラーク液)に存在する量と,遠心分離後に得られた固形分に残ったフッ化物濃度を上述の 電極法にて測定した。

なお著者らは, 試料片をどのように人工プラークで覆 ったか, またどのように硬さを測定したか, 詳しくは解 説していないが, 筆者は次のように推察した(図 2)。人 エプラーク(緑色の線で示された層)とエナメル質試料 片との接触界面を除いて, 耐水性の皮膜で試料片を被覆 する。次いで人工プラークの層を試料片と固着させた状 態にし, 図の右端の緑色の窓から砂糖液を浸透させる。 砂糖液は赤色の矢印に沿って左側に拡散し, *S. mutans* に よって代謝されて酸が産生される。この酸によってエナ メル質表面は脱灰される。脱灰後(含漱 45 分後), 口腔 から試料片を取り出し, 人工プラーク層を取り除いた 後, エナメル質表面の硬さを測定する。測定は, 測定表 面ゼロ µm から図で示した赤線に沿って 2,500 µm の深さ まで行う。

結果1: <u>脱灰後のエナメル質の硬さの%減少率(%SHC): [健全硬さ-脱灰後の硬さ]: 健全硬さ×100%</u>
 (1) 実験群Aでは,Fなし歯磨剤の場合と比べてF歯磨剤の場合にてエナメル質硬さの減少率は,平均してどの測定点でも小さかった(図3: 横軸は Distance from the block edge; 縦軸は%SHC; アルファベッ

トの違いは有意差あり)。しかし両 F 歯磨剤(500 と 1100 ppm)のあいだで有意差は認められなかった。

② それに対し実験 B と C では、A と異なった結果であった。なお B と C では、どの測定点でも硬さの減少率に関して有意差が認められなかった。すなわち口腔の外での歯磨剤処置の影響は認められなかった。そこで、この両結果をプールして解析した(図 4)。その結果、両 F 歯磨剤の影響を受けた人工プラークにおいて、F なし歯磨剤の場合と比べて有意に硬さの減少率は小さかった。

以上の結果から,以下のことが推察される。 <1>上述したように,実験B(試料片への歯磨 剤処置なし)とC(試料片への歯磨剤処置あ り)では,どの測定点でもエナメル質硬さの減 少率に関して,有意差が認められなかったこと から,F歯磨剤で試料片を処置しなくても,プラ ークがF歯磨剤で処置されていれば,同じ脱灰 抑制効果が得られること,すなわち必ずしもエ ナメル質をF歯磨剤で処置しなくてもよいこと を示唆している。換言すればプラークへのフッ 化物の取り込みの方が,エナメル質へのフッ 化物の取り込みよりも脱灰抑制効果に大きく 寄与する。

<2> エナメル質の硬さの減少率について,実 験A(図3)とB(およびC;図4)を比較 すると,下記のような推察が可能である。F なし歯磨剤において,図3と4では,ほぼ同 様な減少率である。従ってF歯磨剤による脱 灰抑制効果の比較が可能である。そうする

と,実験 A では 2,500 μm の測定点までの硬 さの減少率は約 15~35%と読み取れる。それ

図 3 実験 A) 青線:1,000 ppm 歯磨剤, 緑線:500 ppm 歯磨剤, 赤線:プラセブ歯磨剤.

図 4 実験 B または C:両者は統計的に優位差なし) 青線:1,000 ppm 歯磨剤, 緑線:500 ppm 歯磨剤, 赤線:プラセブ歯磨剤

に対し,実験B(およびC)では,5~18%と読み取れる。前述の<1>での推察と同様,脱灰抑制効果に関してエナメル質へのフッ化物の取り込みと比べて,プラークへの取り込みの方が大きな抑制効果を発揮したと推察される。

結果2: <u>プラーク液および固体成分に取り込まれたフッ化物濃度</u>

1)プラーク液について(図5):

①エナメル質試料片を口腔外にて試験歯磨剤で処理した場合(図5では「歯磨剤処理あり」と記載)と 処置しない場合(図5では「歯磨剤処理なし」と記載)とのあいだで、プラーク液に取り込まれたF 濃度に有意差は認められなかった。すなわちプラーク液に取り込まれるF濃度に及ぼす口腔外でのF 試験歯磨剤処置の影響は、全く無いことを示唆している。

②プラーク液に取り込まれたF濃度は、砂糖液の含漱の前および後のいずれにおいても、試験歯磨剤のF

濃度と有意な濃度依存性が認められた。

③砂糖液で含漱することにより(産生された酸の影響も含めて),F濃度は大きく低下した。

2) プラークの固体成分について: (図 6)

- ①各実験群と試験歯磨剤に関して、プラーク固形分に取り込まれたF量は、全体の傾向としてプラーク 液と同様であった(上述の①. ②. ③)。
- ②砂糖液で含漱することにより,F濃度は大きく低下したことから,う蝕予防が達成されるためには,毎 日、F歯磨剤やF洗口剤を使用して補わなければならないことが示唆される。

F: µM

600

500

400

300

200

100

0

Fなし

青色:砂糖含漱のまえ

2

3

図5プラーク液に取り込まれたフッ化物量

1.3.5: 歯磨剤による自分の歯の処置なし

2,4,5: 歯磨剤による自分の歯の処置あり

なお実験 A では、試料片に取り込まれたフッ化物 濃度は. 試験歯磨剤のF濃度に対応して有意に濃度依 存性が認められたとの記載はある。残念ながら実験 BとCではそのようなデータは示されていない。従 って、試料片に取り込まれたフッ化物の濃度が、エナ メル質の脱灰抑制に対して、どのように影響するか推 察はできない。しかしながら筆者がこれまで推察し たように、エナメル質へのフッ化物取り込みよりは、 プラークへの取り込みの方が, 脱灰抑制に関して支配 的に作用しているのではないかと思われる。

最後に本論文の著者らは、この研究結果の限界につ いて以下のようなコメントをしている。①単一細菌

(S. mutans) によるモデル・プラーク(口腔内では複 数の細菌によるプラーク)であること、②1回のみの歯磨剤処置(実際は多数の長年による歯磨剤の使 用)であること、またエナメル質初期う蝕では健全エナメル質と比べて隙間が多くなり、その結果、フッ

化物と反応できる歯質表面積が大きくなることで, フッ化物取り込み量は多くなること(臨床的には 初期う蝕の場合も想定される),③その結果,今回 の健全エナメル質の場合とはフッ化物の作用効果 が異なるとかも知れない。この②と③については、 下記にて追記する。

上記の実験結果から.F歯磨剤やF洗口剤を使用 した場合、歯質よりもプラークFの方が脱灰抑制効 果に対して大きな影響力を及ぼしていることが推 察された。このような背景から、一部の研究者ら は、フッ化物をプラークにより積極的に取り込ませ る新しい技術(Ca化合物とフッ化物の組み合わ せ)の開発を検討している 7。

F: nmol/g 1100 ppm F 400 350 300 250500 ppm F 200 Fなし 150100 500 3 図6プラークの固形分に取り込まれたフッ化物量 青色:砂糖含漱まえ 桃色:砂糖含漱後 1,3,5: 歯磨剤による自分の歯の処置なし 2.4.5: 歯磨剤による自分の歯の処置あり

ここまでは、プラークに取り込まれたフッ化物に よる脱灰抑制の重要性を解説してきた。しかしこれとは異なる研究報告も見られる。Zangらは、脱灰し

桃色:砂糖含漱の後

たエナメル質表面に S. mutans からなる人工バイオフィルムを付着させ, NaF (350 ppm F; 1 日 2 回塗布) とナノアパタイト (10% nHA スラリー; 1 日 2 回塗布) 処置による脱灰抑制効果を評価した⁸⁾。すなわち

彼らは、これらの薬剤の効果について、人工バイオ フィルムで覆われた脱灰エナメル質を、pH4.5の脱灰 液とpH7.0の再石灰化液に交互に浸漬するpHサイ クリング法にて評価した(19日間)。比較群として、 人工バイオフィルムで覆われていない場合でも評価 した。その結果を以下に示す。

まずコントロール群と NaF 群を比較する。バイオ フィルムの有無にかかわらず, NaF の脱灰抑制効果 は認められた。しかしバイオフィルムで覆われてい る場合は,初期値の脱灰量から増加した(図7では 上向きの棒の e)。それに対し覆われていない場合 は,初期値の脱灰量は減少した(図7では下向きの

| 版灰抑制効果:異なるアルファベットは有意差あり

棒のd:再石灰化が進行)。すなわちこの結果は、上述のTenutaらの結果と異なる(バイオフィルムの存在はNaFの効果にとって有利)。この原因に関して、少なくとも2つの可能性を筆者は考えている。第1は、Zangらの実験では、エナメル質試料はあらかじめ脱灰したものを用いた。そのためNaF処置した場合、バイオフィルムで覆われていない場合は、その影響を受けることなく、脱灰病変の内部に効率的にFが浸透し、多くのCaF2様沈着物が形成されたと思われる。それに対しTenutaの場合は、健全エナメル質を用いた。そのためエナメル質表面でのCaF2様沈着物の形成は、脱灰エナメル質の場合と比べて、かなり少なかったと推察される。このCaF2様沈着物の形成量の差が、両者の結果に影響したと考えられる。

第2は、脱灰エナメル質の場合、バイオフィルム由来の様々な物質、特にリポタイコ酸(lipoteichoic acid)が、脱灰表面に吸着してエナメル質アパタイトの結晶へのFの吸着が抑制されたのではないかと 推察される(F取り込みの減少)。さらにはリポタイコ酸が脱灰病変の内部に侵入してアパタイト結晶の 表面に吸着して⁹⁻¹²、Fによる再石灰化作用が抑制されたのではないかと思われる(第13章を参照)。こ のようにプラーク(バイオフィルム)の存在は、実験条件の違いによってフッ化物の効果にポジテイブ 作用する場合とネガテイブに作用する場合があると思われる。う蝕は脱灰と再石灰化を繰り返しながら、 健全歯質が悪化する場合(脱灰が優位)と改善する場合(再石灰化が優位)がある。う蝕の発症は、プ ラークが除去しにくい部位で起きる。プラーク除去が困難という前提で、フッ化物の作用メカニズムに ついて、さらなる検討が必要である。

上述の Zang らの実験に戻って, nHA の効果について解説する。バイオフィルムの有無にかかわらず, コントロール群(水処置)と比べて, nHA 群では baseline 値(脱灰直後の初期値)からの脱灰量の増加 量(vol%·µm)は有意に少なかった。興味あることは, NaF の場合と異なり,バイオフィルムで覆われた 場合の方が,そうでない場合と比べて高い脱灰抑制効果が認められたことである。これは, nHA の微粒 子がバイオフィルムのマトリックス内で吸着したことによる(表1; コントロール群や NaF 群の約 9~ 15 倍高い Ca 濃度)。その結果,バイオフィルム内での Ca²⁺とリン酸イオン濃度が高まって, HA に関して 飽和度が上昇して, 脱灰を抑制したと考えられる。それに対し,バイオフィルムで覆われていない場合 は, 脱灰エナメル質の表面への nHA の吸着は非常に限定的であったと推察される。なぜならば,バイオ フィルムのマトリックス内にて nHA が吸着できる面積は、脱灰エナメル質の表面で吸着できる面積と比べて圧倒的に広いことによると思われる。

ただし留意しなければならないことは、一般に微粒子は、水系ではお互いが凝集して一次粒子(乾燥 状態での粒子の大きさ)の大きさの数 10 倍

にもなることがある。そのため脱灰エナ メル質の表面への吸着,あるいは内部へ の進入は限定的になると思われる。しか しながら両者の差は有意ではあるものの, それほど大きくはないので,nHAの効果 はプラークの有無にかかわらず発揮され ると考えられる。当然,NaFとnHAを併用

群	生菌数	乳酸の産生量	BF 中の Ca 量				
	log CFU/BF	mM	µmol/g (w/w)				
コントロール(水)	9.4 ± 0.1	22.6 ± 0.1	4.0 ± 1.6				
nHA	9.5 ± 0.1	23.4 ± 0.1	60.7 ± 15.3				
NaF	9.4 ± 0.1	21.8 ± 0.7	7.1 ± 5.9				

表1 バイオフィルムの活性(生菌数と乳酸産生量)の比較

CFU: colony forming unit, BF: biofilm, w/w: weight/weight

することで,それぞれの作用メカニズムが異なることで高い脱灰抑制効果や再石灰化促進効果が期待で きる。

さらに彼らは、バイオフィルムの活性(生菌数,乳酸産生量)に及ぼす NaF の影響についても検討した。その結果、生菌数と乳酸産生量に関して、コントロール群と NaF 群のあいだで有意差は認められなかった(表1)。Ciacaman らも、類似な人工バイオフィルム(*S. mutans* を使用)を用いて、エナメル質と象牙質の脱灰抑制効果およびバイオフィルムの活性抑制効果に及ぼす 0.05% NaF 塗布(Fとして 226 ppm,1日2回)の影響を評価した¹³⁾。その結果、NaF を塗布していない群と比べて、塗布群ではエナメル質と象牙質の脱灰を有意に抑制した。しかしながらコントロール群(水処置)と比べて、NaF 処置群におけるバイオフィルムによる酸産生能(pHの低下)およびバイオフィルムの活性(バイオフィルムの 量、細菌数、不溶性/可溶性の菌体外多糖、菌体内多糖)に有意差は検出されなかった。すなわちこれらの結果は、このような濃度のF濃度では、Fは菌体の活性抑制には全く影響しないことを示唆している。

日本ではフッ化物の作用メカニズムとして、プラーク細菌への抑制効果(抗菌,酸産生など)を認め る論調が多い。すなわちこの効果が、う蝕予防の作用メカニズムの1つとして認知されている。この論 調は、多くはインビトロの実験結果による。しかしそのエビデンス(プラーク細菌に対する抑制効果が、 う蝕を予防する効果の立証)を支持する臨床研究は、筆者の知る限り、見当たらない。その理由の1つ として、仮にプラーク細菌への抑制効果が臨床的に確認されたとしても、フッ化物の直接的な作用メカ ニズムである脱灰抑制と再石灰化促進効果との区別が困難であることによると考えられる。

次にプラークFの動態について解説する。フッ化物が口腔(プラーク)から失われることに関連して, Birkeland らも同様な知見を報告した。彼らは1ppmFを添加した水道水を飲用している住民からプラー クを採取し、これに砂糖液を加えて酸を産生させ、遊離したフッ化物濃度を測定した。その結果、低下し たpHの程度と遊離したF濃度とのあいだに有意な比例関係を認めた。しかし砂糖液の代わりに生食水 を加えた場合(pH6)では、Fの遊離は認められなかった¹⁴)。

また Agus らも 10 歳前後の児童から,砂糖液を摂取する前と後にてプラークを採取し,プラーク液の pH とそこに含まれる F濃度,およびプラークを遠心分離して得られた沈殿に含まれる水不溶性(菌体と の結合性)のフッ化物の違いを検討した¹⁵⁾。その結果,砂糖液を摂取した後ではプラーク液に含まれる Fの濃度は,砂糖液の摂取の前と比べて有意に低下した。砂糖液の摂取前では,Fの濃度は全フッ化物濃 度のわずか 2.8%であったが,後では 8.4%に増加した。このことからプラークFは,酸が産生されるたび に減少すること、および全フッ化物の一部はFに変化することが示唆された。

こうしてプラークFは、プラークが酸性になるとFとして遊離し、その濃度がプラーク液内で上昇する。この場合、酸が産生されるので、Fの遊離と同時に脱灰によるCa²⁺などのミネラルイオンの遊離、さらにはプラークからもこれらのイオンの遊離も起きるではないだろうか。Tanaka らは、プラークに存在する結合性無機イオン(水では遊離しないCa、全PO4)が、砂糖液に曝した後に産生された酸で、プラーク本体から遊離するかどうか検討した。その結果、砂糖液に曝す前のpH(約 6.5)がpH5.4 に低下し、それに伴いCa濃度は1.9 mMから5.0 mMに増加した、しかしPO4はわずかにしか増加しなかったと報告している¹⁶⁾。少なくともCa濃度も上昇することで、FAに関する飽和度がさらに高くなり、より効果的に歯質の脱灰が抑制できると推察される。

通常, 唾液にて検出される F濃度は,約0.1 ppm 以下の非常に低い濃度である。それに対してプラーク では前述したように数 ppm である。文献値を参照すると,両者で最大で数100倍もの濃度差がある。に もかかわらず,プラークにおいて高い濃度でフッ化物が存在すること,すなわちこの事実は,濃度勾配に 逆らってプラークに取り込まれるメカニズムが存在することを示唆している。それではプラークはどの ようなメカニズムでフッ化物を取り込み,取り込まれたフッ化物はどのような化学的状態で存在するの か。また酸産生によって取り込まれたフッ化物が,どのようなメカニズムで Fが遊離するのか。入手で きた論文と筆者の推察から,以下のように考えられる。

まず取り込みのメカニズムの候補として、①細菌内の陽イオン性の物質(アミンやアミド基を含む塩 基性アミノ酸やタンパク質)と結合する、②糖類などに存在する水酸基(OH)との水素結合を介してプ ラーク成分に結合する、③幼弱石灰化物に吸着する、④Caブリッジを介して結合する(後述の4)など が考えられる。一方、プラークが酸性になることでフッ化物が失われるメカニズムの候補として、一部 のフッ化物はフッ化水素酸(HF)となって遊離するか、あるいは上述した4つのタイプの結合からFと して遊離するのではないかと推察される。

以下に、これらの点について幾つかの研究成果を紹介するが、必ずしも知見が一致していない。これは、それぞれの実験条件がかなり異なるからであろう。例えば代表的な口腔細菌を用いた *in-vitro* における実験条件の違い、あるいは *in-vivo* で形成された実際のプラークやプラーク液を得る条件(プラークが形成された時間の長短、砂糖液を摂取した後の時間経過あるいはプラークの採取部位など)、さらにはFの測定条件など違いによるかも知れない¹⁷。

なおここではフッ化物は NaF しか取り扱わない。モノフルオロリン酸ナトリウム(MFP)の場合,この分子はホストまたは細菌由来のフォスファターゼによって加水分解を受けるので, NaF の場合のメカ ニズムは直接適用されない,もっと複雑であることが予想される。紙面の都合上, MFP については本稿 ではこれ以上は言及しない。

Whitford らは、口腔細菌へのフッ化物の取り込みについて、細菌(S. mutans 6715)を用いてFを含む緩衝液のpHの影響を検討し、以下のような知見を得た¹⁸⁾。

①F取り込みは非常に短い時間(分単位)で起こる。取り込みはpH依存性であり,pHが低いほど多く 取り込まれる。一連の結果から,数分以内の短時間で起きるF取り込みメカニズムは,細胞内へのHF 分子の拡散と,細胞内に存在する何らかの成分によるFの補足(弱い相互作用)と考えられる(筆者 の考察)。またあらかじめ酸性の緩衝液に浸漬した細菌では,取り込み量は顕著に減少する。これは細 菌内部の pH が低下することで, 緩衝液と細菌内部のあいだで pH 差が小さくなり, pH 依存性の影響が 小さくなるからである(筆者の補足: Fは pH 中性領域では, イオン性の Fとして存在するが, 酸性 pH では水素イオン(H⁺)と結合して電荷を持たない HF 分子として存在する; 第7章の図5を参 照)。しかしながら筆者は, F 歯磨剤や F 洗口剤のような pH 中性の製剤では, このようなメカニズムは 実際には適用できないと考えている。一方 APF 塗布剤(pH3.5)の場合は, このメカニズムが機能す ると考えられる¹⁹。

- ②取り込み量は,緩衝液への浸漬時間が短いほど多くなり,時間が長くなると減少する。これは一旦細菌に取り込まれた Fが,緩衝液に戻ってくることを示している。この知見は,取り込まれたフッ化物が細菌内の物質と強固な化学結合をしていないことを示唆している。
- ③細菌の活性に影響する物質(エネルギー源としてのグルコース,細胞毒としてのシアン,解糖系の酵素の阻害剤であるヨード酢酸)を緩衝液に加えても,取り込み量に影響しなかった。これは,フッ化物の取り込みが,エネルギー依存性ではないことを示唆している。

しかし彼らは、なぜ取り込み量は HF の形成量に比例するかの推察は行っていないが、筆者は以下のように推察する。pH が中性の場合、フッ化物の大部分は陰イオンの Fとして存在する。一方プラーク内の細菌の細胞膜はリン脂質 2 重膜で形成されているので、同じくマイナスの電荷を帯びている。そのような場合、マイナス電荷同士の反発作用で、Fはプラーク内には浸透しにくいと考えられる。それに対しpH が低い場合、Fの一部は H⁺と反応して HF となり、電荷がゼロとなる。細菌の細胞膜も H⁺が吸着して電荷がゼロに近づく。すると pH 中性の場合で起こる、マイナス電荷同士の反発は小さくなる。その結果、HF あるいは Fは pH 中性の場合より容易に膜を通過でき、細菌に取り込まれやすくなる。取り込まれた HF は、pH 中性の場合より容易に膜を通過でき、細菌に取り込まれやすくなる。しかし細胞内に一定以上の HF が流入すると pH の低下が起こり、細菌への取り込み量は頭打ちになる。Cardoso ら ²⁰⁾や Eisenberg ら ²¹⁾も同様な傾向の結果を報告している。

(2) Kashket らは, *Streptococcus sanguis* strain H7PR3 を用いて以下のような知見を報告した²²⁾。この細菌を 1 ppm の Fを含む培養液に浸漬すると,細菌内の濃度は約 6 ppm に上昇した。また細菌は,フッ化物を取 り込むためにエネルギーを使用しなかった。さらに,取り込まれたフッ化物は,緩衝液で比較的簡単に は取り除くできるものと,取り除くことができない(非可逆的)ものが存在する。すなわち細菌内に含 まれる物質に,一部の Fは化学的に結合していると推察される。

(3) Tokura らは, *in-vivo* で形成したプラークを用いて, Fの取り込みとプラーク内のフッ化物の分布状態に 及ぼす pHの影響を検討した²³。あらかじめ1および3週間かけてプラーク形成し,このプラークに pH3 と pH7 の2種類の1,000 ppm F洗口剤を作用させた。その結果, pH3 のときの場合の方が, pH7 の場 合と比べて,プラークの各層(1~7層)でのフッ化物の取り込み量は少なかった(図8)。この結果は, 一般的に考えられてきた上記 Whitford らの(1)の結果とは一致していない。

彼らはその理由として, pH3 の F 洗口剤を使用した酸性では, 全フッ化物の 60%は HF として存在する ため, この HF がプラークの表層に存在するプラーク・マトリックス(特にタンパク質と炭水化物のグル カン)とのあいだで水素結合を形成し, その結果, HF はプラーク内部への拡散が抑制されるからとして いる。さらに同様に, pH 酸性では負に帯電したプラーク細菌の表面が非帯電性となり(R-COO⁺ + H⁺ ⇒ RCOOH),イオン化している F(全フッ化物の
 40%)はこの RCOOHの H部位と水素結合して、
 プラーク内部への拡散が抑制されるからとしている。

一方, pH 中性の F 洗口剤を使用した場合は, そのような制約(プラーク表層での水素結合による補足)が少ないからとしている。しかしいずれの pH でも, 取り込まれたフッ化物はプラーク表層で高く, エナメル質に近い深層では少なかった。同様な結果を Watson ら²⁴⁾ も報告している。これに

図 8.1 および 3 週間プラークに対して, pH3 または 7 の F 洗口剤(1000 ppm)を使用したときの各層での F 濃度

対し、先の Cardoso も酸性と中性の F 歯磨剤を比較し、両者の F 歯磨剤にてプラーク F の取り込み量に 有意な差はなかったと報告した²⁰⁾。

ここで筆者を含め読者は、単一細菌で得られた結果とヒトロ腔内の自然のプラークで得られた結果と

で,結果が大きく異なることに疑問を抱くで あろう。筆者は,その理由の1つとして自然 のプラークには Ca²⁺やリン酸イオンなどの無 機イオンや有機物(有機酸とアミノ酸など) の成分(表2:*は測定せず)が,唾液と比べ てかなり高い濃度で存在し,これらの成分と Fとの相互作用が起きると考えている。表2 の数値は代表的な1例であり,文献では様々 な濃度が報告されている^{2,3,4)}。相互作用の1 例として,プラークに含まれる Ca²⁺濃度³⁾と Fによる CaF₂(あるいは CaF₂ 様物質)の形 成沈着が挙げられる(第12章を参照)。ちな みに CaF₂の溶解度積[Ksp=(Ca²⁺)×(F)²]は,

3.9×10-11 であるので、便宜的に活量係数を1.0

表2 プラーク液, 唾液および血清中に含まれる成分の比較

成分	プラーク液	全唾液	血清	
рН	5.7	6.7	7.4	
全Ca	7.1 mM	2.5 mM	2.3 mM	
全PO ₄	23.2 mM	6.0 mM	1.3 mM	
全Mg	2.0 mM	$0.2{\sim}0.6\mathrm{mM}$	0.8~1.0 mM	
Na⁺	18.6 mM	5.0 mM	140 mM	
K+	85.1 mM	22.0 mM	4.0 mM	
NH_4^+	26.3 mM	$0.6{\sim}7.0\mathrm{mM}$	*	
HCO ₃ ⁻	*	$4\sim$ 40 mM	*	
Cl⁻	23.8 mM	$10\sim$ 56 mM	$98\sim$ 108 mM	
酢酸	45.2 mM	*	*	
プロピオン酸	30.8 mM	*	*	
乳酸	1.4 mM	*	*	
全有機酸	93.6 mM	*	*	
全アミノ酸	22~30 mM	*	*	
全タンパク質	*	0.1~0.6%	*	

とすれば計算上,数 ppm の Fが一定時間プラーク液に存在すれば, CaF₂の形成は可能と推察される。ただし活量係数しだいでは,その可能性は小さくなる。

Whitford らは、プラークに含まれる Ca 濃度が高いほど、フッ化物もより多く含まれると報告した²⁵)。 この可能性について Vogel らは、48 時間ブラッシングを控えて形成された *in-vivo* プラークを用いて検討 した²⁶)。彼らは、プラーク形成を終えた被験者に 228 ppm F の洗口(1分間)を要請し、30分後あるいは 1時間後にプラークを採取した。このプラークを遠心分離し、プラーク液についてはイオン化した Ca²⁺ と F濃度の測定を行い、遠心分離した沈殿相については CaF2様物質の形成の有無を検討した。その結 果、CaF2様物質の形成は認められなかった。この結果について、彼らは以下のように考察した。CaF2様 物質は形成されたかも知れないが、30分以内に溶解してしまったのではないか。あるいは理論的には形 成されるはずであるが、プラークには CaF2様物質の形成を抑制する物質(タンパク質など)が含まれて いるため、形成が抑制されたのではないか。彼らは、この結果からプラークへのフッ化物の取り込みと 徐放性は、CaF2様物質によるものではなく、プラーク細菌に結合したフッ化物によるものであると推察 した。この推察は、筆者が先に述べた4つの可能性に相当すると思われる(①細菌内の陽イオン性の物 質との結合、②糖類などに存在する水酸基(OH)との水素結合を介してプラーク成分との結合、③幼弱 石灰化物への吸着、④Caブリッジを介した結合)。

さらにこの表2で注目すべきことは、上述したようにプラーク液では唾液と比べて、これらの無機イオンや有機物の濃度がかなり高いことである。このような大きな濃度差であれば、唾液への拡散が起きて両者で濃度差が無くなるはずである。なぜ唾液との濃度差が維持できるか。筆者は以下のように考えている。菌体表面の負の電荷と Ca²⁺や Na⁺/K⁺/NH4⁺などの正に荷電したミネラルイオンとのあいだのイオン的相互作用によるこれら陽イオンの滞留、あるいは不溶性グルカンの粘性によるこれら陽イオンの拡散の抑制である。フッ化物の取り込みに関しては、上で言及したようにプラーク内の有機物とミネラルイオンあるいは Fとのあいだの水素結合の形成が推察される。このようなプラーク液の特性は、砂糖やグルコースなどの糖類分子をプラーク内に一定時間保持できることと関連していると思われる。このことにより、糖類を摂取後、数10分のあいだ pH が低下し(いわゆる Stephan curve)、その結果、歯質の脱灰に繋がると思われる。

(4) Rose らは、Fがプラークに取り込まれるメカニズムとして、Caブリッジの可能性を Streptococcus mutans R9 を用いて検討した。Caブリッジとは、Ca²⁺が介在して、Fが負に帯電した菌体表面に結合する

という仮説を言う。具体的には、負に帯電した菌体 表面と、同じく負に帯電した Fのあいだに、正に荷 電した Ca^{2+} が介在するモデルである(図 9)。彼ら は、 Ca^{2+} 以外の 2 価金属イオンとして Mg^{2+} と Zn^{2+} も 検討した。その結果、菌体と Fとの結合定数および Fを取り込む量は、いずれの金属イオンでも増加し た²⁷⁾。

それでは、プラークFとう蝕罹患状況とのあいだ にどのような関連性があるのか。この疑問に厳密に

図9 カルシウム・ブリッジによるFの捕獲

答えることは、以下のような理由で困難である。①プラークFの分析値は、日常生活の様々な場面の1 場面での値でしかない。う蝕の発症は、個人における長いあいだの生活様式の違い(飲食物の摂取パタ ーン、F製剤の使用頻度、ブラッシング・テクニーク、プラーク細菌叢など)の蓄積の結果である。従って、 単純な相関性を議論することは危険である。②フッ化物は、プラーク以外にも歯質や口腔粘膜²⁸⁾にも取 り込まれ、フッ化物の徐放源となり得るので、プラークFとの厳密な区別はできない。③飲料水のフッ 素化した地域では、Fは唾液腺からも供給される²⁹⁾。

このような制約を踏まえた上で、プラークFとう蝕罹患指数とのあいだの関連性について疫学調査を 行った1例を示す。Agus らは、飲料水に含まれるF濃度の異なる3地域(0.1, 1.0, 1.0 ppm)に生活する 10歳前後の児童(72人)を対象に、プラークFとDMFT値の関連性を調査した³⁰⁾。その結果、プラー クF濃度とDMFT値とのあいだに有意な逆相関性が認められた。ただし3地区総計の相関係数(r)は、 -0.28と大きくはない(残りの72%はフッ化物以外の要因が関与)。相関係数が小さいことは、上述の① と②の制約を反映していると思われる。Hartshorneらも同様な関連性を調査した³¹⁾。彼らは被験者(南 アフリカの原住民と思われる)の大部分(78.5%)がブラッシング習慣はなく,飲料水に含まれるF濃度が異なる3地域(0.4 ppm以下,0.4~1.6 ppm,1.6 ppm以上)で生活する児童を対象に調査した。その結果,飲料水に含まれるF濃度とDMFT値とのあいだで有意な相関性は認められなかったが,プラークFとのあいだでは有意な相関性を認めた。

最後に、「フッ化物は細菌活性や酸産生能を抑制して、う蝕予防に寄与するか」について、再度、私見 を述べてみたい。『う蝕予防の実践:フッ化物局所応用実践マニャル;日本口腔衛生学会フッ化物応用 委員会編、初版:2017年6月4日』には、フッ化物による予防メカニズムとして、歯質への作用(脱灰 抑制と再石灰化の促進)と歯垢への作用(細菌の酵素作用の抑制による酸産生の抑制)の両方が挙げら れている。前者の作用(効果)に関しては、様々な実験的環境下(*in-vitro*, *in-vivo*, *in-situ*)で行われた多 くの研究によって実証されている。

しかしながら後者に関しては、本章の前半でも言及したように、様々な疑問が残されている。例えば Bradshaw らは各種の口腔細菌を糖類含有の培地に接種し、連続培養後の酸産生に及ぼす F (19 ppm)の 影響を検討した。その結果、Fによる培地の pH 低下の抑制効果が認められた³²⁾。同様に Van Loveren ら は、う蝕関連細菌として最も重視されている S. mutans の酸産生能に及ぼす F濃度の影響を検討した³³⁾。 その結果、酸産生能を完全に抑制する F濃度は、pH7 の環境下では 517 ppm であり、pH4.5 では 1.9 ppm であった。これらの結果は、臨床的には達成が困難な高濃度のフッ化物、しかもかなり長時間にわたっ て Fに曝された場合の結果である。このような高濃度の Fを長時間に維持することは、臨床的には困難 である。最も頻繁に使用されている F 歯磨剤を使用した場合は、数 100 ppm の高濃度の Fが観察される 時間は、最大でも歯磨き時間は通常 3 分に満たない。歯磨き後の口腔内(唾液とプラーク)のフッ化物 濃度は、10 分以内で 1 ppm 程度ないしはそれ以下に低下する。F洗口剤でも同様な傾向である。従って、 このような高濃度で長時間、菌体と接触させた実験結果は、実際の口腔では起こり得ないことから、臨床 的にう蝕予防に寄与するとは考えにくいと筆者は考える。

酸産生に関連して、プラーク Fが細菌内に存在するエノラーゼ(解糖系に関与して酸を産生する酵素, 同酵素の活性化には Mg²⁺が好適)の活性に 表3 プラークによる酸産生に及ぼすフッ化物洗口剤の影響

必要な Mg²⁺と結合することで, 酵素活性を 阻害することは良く知られている³⁴⁻³⁷⁾。 Takahashi らは, グルコースから代謝される乳 酸の量に及ぼす F 洗口剤の影響を検討した。 被験者は, 10 mL の NaF 洗口剤 (Fとして 225 または 900 ppm)を1分間洗口し, 次い で 10 分後に 10 mL のグルコース液 (10 mol/L)を1分間含漱した。その後, プラー クを採取して乳酸イオンの濃度を測定した

3	ブラー	ーク	によ	る酸	産生	に及	ぼす	フ	ッ1	上物	先口	剤0	D 影	響
				(立) 王		->	л н н	E 4	L)					

(子	北酸イ	\triangleleft	/	の生	瓜里	

リンス剤	プラーク中の乳酸イオン 濃度(nmol/mg wet weight)
グルコース液	45.3 ± 21.7*
225 ppm F 洗口剤の後にグルコース液	$29.9 \pm 11.6^{**}$
900 ppm F 洗口剤の後にグルコース液	$24.4 \pm 12.5 **$
キシリトールとグルコース混合液	41.1 ± 17.8
キシリトール液単独	4.21 ± 2.90
精製水(プラセボ)	4.89 ± 6.20

³⁸⁾。その結果, 225 ppm で 34%, 900 ppm で 46%の乳酸イオンの濃度の減少が認められた(表3;*と**の あいだで有意差あり)。この結果から, フッ化物には糖類の代謝を抑制して, う蝕を予防する効果が期 待されるとの見解が示されるが, その見解に疑念や未解決の課題を示す研究も認められる ^{39,40)}。先の Takahashi らの結果は, F 洗口剤を使用した1分後の効果である。通常, F 歯磨剤や F 洗口剤を使用した場
合,30分以上は飲食の摂取は控えることが推奨されている。はたして30分後(あるいはそれ以上の時間後)でも、そのような酸産生抑制効果は得られるであろうか。

しかし NaF と異なり, フッ化第 1 スズ (SnF₂)の場合は事情が異なるように思われる。Sn²⁺は⁴¹⁻⁴³, Ag⁺ や Zn²⁺あるいは Cu²⁺と同様に⁴⁴⁻⁴⁸, 口腔細菌の活性や酸産生能を抑制するする作用に関して, NaF より強いからである。

第9章: 脱灰液に含まれる有機酸の濃度や種類の影響

プラーク内には、様々な有機酸(乳酸,酢酸,プロピオン酸,桂皮酸,蟻酸,ブチル酸など)が検出される。図1に10%砂糖液を2分間含漱した後、プラークで産生された有機酸について、その経時的濃度

変化を示した¹⁾。含漱前は酢酸の濃度が高く,次いで乳酸の濃度が高い。その後,酢酸の濃度が減少して乳酸の濃度が増加した。これは,砂糖から乳酸が産生されたことによる。23分後になると,乳酸濃度は低下し,酢酸が増加傾向にあった。これは,乳酸から酢酸が産生されたことによると思われる。その他の有機酸(プロピオン酸蟻酸コハク酸)の濃度に,大きな変動は見られなかった。一方,酸を産生していない(通常)状態では酢酸が最も高い濃度(数10 mM)で検出される。それに対し

図110%砂糖液を含漱した後の各種の酸の濃度変

乳酸の濃度(数 mM)は、かなり低い¹⁾。これらの有機酸の濃度は、プラークを採取した後、遠心分離して得たプラーク液(μL)をイオンクロマトグラフィという装置を用いて分析された。

これらの有機酸の中で,比較的強い酸としては乳酸が,弱い酸としては酢酸が該当する。強い酸(この場合は乳酸)とはイオン化しやすく H⁺を遊離しやすい酸であるが,酸緩衝能は小さい。弱い酸(この場合は酢酸)ではその逆である。このことは,酢酸イオン濃度が高いプラークほど,乳酸が産生されたとき pH の低下は抑制され,脱灰されにくいことが示唆される²⁾。また同じモル濃度であれば,酢酸より乳酸において低い pH を示す。これは酸解離定数 (pKa = -logKa)が酢酸で 4.76 であるのに対し,乳酸では 3.86 と大きいからである (式1にて A⁻は乳酸または酢酸イオン)。

式 1) AH \Leftrightarrow A⁻ + H⁺ Ka = $\frac{(A^{-}) \cdot (H^{+})}{(AH)}$

このように有機酸といえども弱い酸と強い酸とでは、異なった化合的性質が見られる。さらには、乳酸分子にはカルボキシル基(R-COO)と水酸基(OH)の2つの末端基が存在し、弱いながらもこれらの末端基は Ca²⁺とキレート結合する(本章の式2と3を参照)。そのような違いが、歯質の脱灰速度にどのような影響を及ぼすか、本章にて解説する。

まず第1に, pHの影響を見てみる。図2に同一飽和度でありながら,異なる pH値の場合(4.3, 5.0, 5.5 または 6.0)の脱灰程度を比較した結果を示す³。ただし飽和度を一定に保つため、またそれぞれに指定 された pHを設定するため、ミネラルイオン濃度はそれぞれの脱灰液で異なる。酸としては乳酸を使用 した。ここでは 2 つの飽和度の事例($DS_{EN}=0.15$; 図2の左, $DS_{EN}=0.17$; 図2の右)で検討した。なお ここでは、第4章で定義した飽和度の値をその構成イオン数である9で開いた値($DS^{1/9}$)である(以下 同様)。この値が1より小さいほど、脱灰ポテンシャルは強いことを示している。 その結果,いずれの飽和度の場合も pH が低いほど脱灰程度(vol%·µm)は大きかった。例えば, DS_{EN} = 0.15 において脱灰日数が 9 日の場合, pH4.3 では pH5.5 と比べて,約4 倍以上もの多い脱灰程度を示した(図2の左)。

DS_{EN}=0.17 において は, 脱灰日数が 10 日 の場合, pH4.3 では pH5.5 と比べて, 約 2.5 倍程度多い脱灰 程度を示した(図 2 の右)。

この2つの結果は, DS_{EN}の値が同じ条件 であれば, pH が低い

図2 同一飽和度において, 脱灰程度に及ぼす pH の影響

ほど強く脱灰されることを示している。その理由は、解離していない酸の濃度が関係する。解離していない酸とは、H⁺がカルボキシル基(R-COO)に結合した状態にあることを指す。その程度を酸度

(acidity) ともいう。非解離の酸は、無電荷であるためエナメル質結晶に存在する荷電イオン(Ca²⁺, PO₄³⁻, OH) と相互作用をしないため、容易にエナメル質内部に浸透できる。エナメル質内部は pH 中性 の環境下であるため、非荷電の酸はただちに H⁺を遊離してエナメル質を脱灰する。すなわち非解離の酸 の濃度は pH が低いほど高い濃度で存在するため、強い脱灰作用を呈することになる。さらには、酸度が 大きいことは酸緩衝能が高いことを意味しているので、酸の緩衝能が大きいほど酸の pH が長く維持さ れ、脱灰が持続的に進むと考えられる。

第2に、彼らはこの酸度の違いを2つの有機酸(乳酸と酢酸)を用いて確認した。ただしpHは4.30-4.37の範囲とした。図3に、3つの異なった飽和度(DS_{EN}=0.155、0.166、0.175)において、それぞれの飽 和度を固定して「乳酸: lactic」と「酢酸: acetic」とのあいだで、脱灰速度(ΔZ/day)に関する違いを示し

た。ただし飽和度を一定に保つため,また酸度 の程度を調整するため,pHやミネラルイオンあ るいは有機酸濃度は,それぞれの脱灰液で異な る。縦軸は脱灰期間を通して1日あたりの脱灰 程度(ΔZ/day),横軸は酸度(mol/L)である。 図3では,もともとの乳酸と酢酸の濃度は0.1 mol/L であるので,横軸の数値はイオン解離して いない酸の濃度(mol/L)である(計算によって 求められる数値)。

この図3から3つの特徴が読み取れる。①い ずれの飽和度の値においても,酸度が大きいほ ど脱灰速度は速い。②酸度が同じ場合,飽和度 が小さいほど脱灰速度は速い。③酸度と飽和度 が同じ場合,乳酸の方が脱灰速度は速い。

図3同一の飽和度において有機酸の酸度とその種類が脱灰 に及ぼす影響

これらの知見について以下のように説明できる。①に関しては、上記で解説した内容と同じ(非解離の酸によるエナメル質内部への高い浸透性および高い緩衝能)。②に関しては、前述したように当然の結果である。③に関しては、酢酸の場合と比べて乳酸の場合において、Ca²⁺との結合定数が高いからである(下の式2と3)⁴。すなわち脱灰が進むと、Ca²⁺が溶け出し飽和度の上昇(脱灰ポテンシャルの低下)

式 3) 酢酸イオン (A⁻) + Ca²⁺ ⇒ CaA⁻ (CaA⁻)/(A⁻)·(Ca²⁺) = K_{1A}
$$\log(K_{1A}) = 0.53$$

をもたらすが, 乳酸の場合, 溶解した Ca²⁺とキレート結合して乳酸カルシウムというイオンペアを形成 する。その結果, 完全にイオン化している Ca²⁺濃度の上昇を抑えることができる。それに対し酢酸の場 合は, 完全にイオン化している Ca²⁺濃度は, 乳酸の場合より高い。つまり乳酸の場合, DS_{EN}(脱灰ポテン シャル)の上昇を効果的に抑えることができるため, より長く脱灰ポテンシャルを維持できる。

第3の検討として,彼らは脱灰液の飽和度が一定のとき(乳酸: DS_{EN} = 0.155 で一定,酢酸: DS_{EN} = 0.166 で一定),これらの有機酸の濃度(25,50,75,100 mol/L)が異なると脱灰速度にどのような影響が

現れるか検討した。個々の脱灰 液は,飽和度が同じレベルにな るようにミネラルイオン濃度と 有機酸の濃度および pH (4.33 -4.37)を調整して作製した。これ たの脱灰液を用いて,経時的に 脱灰量 (ΔZ: vol% μm)を評価し た(図4の右が乳酸の場合,左が 酢酸の場合)。その結果,乳酸

らの酸の濃度に比例して脱灰速

と酢酸のいずれの場合も、これ 図4 飽和度が同じとき脱灰液中の有機酸の濃度が脱灰量(速度)に及ぼす影響

度は大きかった。これらの結果は、「非解離の酸の濃度は、用いた酸濃度に比例する」ことから説明で きる⁵⁾。

これら全ての結果を受けて彼らは、脱灰程度(速度)に及ぼす飽和度と酸度の影響を以下のような一般式として書き表した。ここでCは係数(一定値),DS_{EN}はエナメル質に対する脱灰液の飽和度,Σ(B_iH)

脱灰速度 = $C \times [1 - DS_{EN}]^m \times [\Sigma(B_iH)]^n$

は脱灰液に存在するイオン化していない有機酸(i個)の全濃度(Σ(B_iH)),そして m と n は実験結果に 最も近似できる調整パラメータである。なおイオン化していない有機酸の濃度は、その酸解離定数

(K_i=[(B_i)·(H)]/[B_iH])から計算で得られる。このように,脱灰現象に及ぼす化学的因子(飽和度,pH,酸 度,酸の濃度,その種類)について,系統的にここまで検討を加えた報告は,エナメル質の脱灰現象を化 学的に理解する上で非常に貴重である。

上記のような研究のほかに,熱力学的観点から HA の単結晶レベルでの脱灰メカニズムあるいは脱灰 速度を検討した研究が多数報告されている⁶⁻⁸⁾。しかしこれらの研究をここで紹介するには,非常に複雑 な内容を含み,筆者の理解を超える点が多いので割愛する。

第10章:初期う蝕(表層下脱灰)の特徴

いわゆる白斑という初期う蝕病変は、「エナメル質表層が比較的、健全状態で維持されつつも、その下層 部が選択的に脱灰される」という不思議な特徴を有する。これを病理学的には、表層下脱灰病変 (subsurface lesion)という。すなわち脱灰は、エナメル質の内層から優先的に進行する。この不思議な現

象については¹⁾, すでに 1930 年代にその存在を確認したという²⁴⁾。残念ながら, 筆者は PubMed では確認できなかった。しかしながらそれ以来, なぜそのような特異な脱灰様式となるか, そのメカニズムについての研究の進展は見られなかった。1980 年代になって, 本格的にそのメカニズムに関する研究がなされるようになった。それについては, 第 11 章で解説する。本章では, そのような特徴的な病変が予防歯科にどのような影響を及ぼしてきたか解説する。

まず指摘しておかなければならないことは、初期う蝕の検出や定 量的診断は容易ではないことである。初期う蝕病変は、図1(筆者ら の資料)に示したように歯のどの面(平滑面,隣接面,咬合面)でも 見られるが、その検出や診断は、特に隣接面と咬合面では、現時点 でも困難な課題として残されている。

隣接面では、もともと見えにくい部位に病変が存在するので、

図1エナメル質初期う蝕病変 隣接面と咬合面に病変を認める.

発見が遅れてかなり進行した状態で見つかることが多い。また病変の広がりが判然としない場合がある。 現時点の共通認識として,視診と比べてレントゲン診断の方が,信頼性に優れているとされている^{1,5,6)}。 咬合面では,小窩裂溝に沿って着色が見られる場合が多い。しかしこの着色と脱灰の程度の関連性は乏し い。もしこの関連性を鵜呑みすると,健全歯質を不要に研削することになりかねない。また隣接面の場合 と同様,咬合面での病変の確定および定量的診断に関しても、レントゲン診断が最も信頼性が高いとさ れている^{1,5,6)}。しかしレントゲンで確認された場合は,すでの病変は象牙質まで進行している場合が多い と思われる。またエックス線の多用は、当然、生体に対する為害性の懸念を生じさせる。このような状況 は、臨床医にとって非常にジレンマとなっている。

そのためエックス線を用いない光学的・電気的方法による,初期段階にある病変の検出と診断システムの開発が,現在も活発に続けられている⁶。例えば,蛍光を用いた Diagnodent^{7,8}や QLF法(Qantitative Light – induced Fluorescence)⁹⁻¹¹,光干渉現象を用いた OCT (Optical Coherence Tomography)¹²⁻¹⁴,電気抵抗を用いた ECM (Electrical Conductance or Caries Meter)^{15,16},透過光の散乱現象を利用した FOTI (Fiber Optical Trans Illumination)¹⁷⁻¹⁹)などが期待されている。しかし,特に光学的方法には簡便で定量的測定ができるというメリットがあるものの,偽陽性となるリスクが無視できないなど,それぞれの診断システムにおいて一長一短があり,今後の研究の進展が待たれる^{8,20})。

このようにエナメル質う蝕の初期段階は、「正確には見えない、偽陽性のリスクを伴う」という困難で特 徴づけられる。従ってう蝕予防学の歴史は、その検出法や診断法の研究で多く占められてきた²¹⁻²⁴。この 問題については、1 つの研究分野を形成するほど沢山の研究がなされ、現在も続いている。しかし本稿の 趣旨を超えるので、これ以上の言及は控える。

一方,もしエナメル質の脱灰が表層下脱灰を伴わず,常にう窩から出発すると仮定すると,ICDAS²⁵⁻²⁸⁾ や CO (Caries Observation)²⁹⁾などう蝕の診断法は,現在の診断基準とは異なり,もっと単純な基準となったと思われる。つまり初期う蝕の発見や診断はもっと容易であったと思われる。当然,隠れう蝕³⁰⁻³⁶⁾ のような厄介な問題は存在しなかったであろう(第15章を参照)。またう蝕の予防方法も全く別の歴史

を辿ったであろう。すなわち,初期う蝕(表層下脱灰)病変の再石灰化というアプローチは成立せず, う蝕予防のアプローチはひたすら「脱灰抑制」だけが中心となったであろう。またう窩性の病変は,表 層下脱灰の病変より早期の段階でしかも比較的容易に検出できるので,う蝕罹患率は今より低かったの でなないかと筆者は推察している。

医学の分野でもその病気が,初期段階で視認できる場合や 痛みなどの違和感を自覚できる場合は,深刻な状態には至ら ず回復できるチャンスが高い。しかしそうではない場合,例 えば肝臓や膵臓など特定の病気に対して「臓器が沈黙」して いる場合,痛みなどの違和感に気がついたら末期の段階であ ったという話しをしばしば聞く。

表層下脱灰という言い方は臨床的には用いられていない。 これは、エナメル質病変の切片などで観察される病理組織学 的に名づけられたものである。一般的には初期う蝕と呼ばれ る。本章での解説は、その形成メカニズムに関する内容なの で表層下脱灰という言い方をする。しかし表1に示したよう に、臨床的命名に関しては英語とそれに対応する日本語表記

表1初期う蝕について様々な表記例 early carious lesion(初期う蝕) subsurface lesion(表層下脱灰) white spot lesion(ホワイトスポット) incipient lesion(初期う蝕) enamel lesion(エナメル質う蝕) hidden caries(隠れたう蝕) non cavitated lesion(非う窩) brown spot lesion(ブラウンスポット) Co(現在,公式には使用せず) C1(エナメル質う蝕) CO: Caries Observation(要観察歯) sticky fissure(軟化裂溝)

に、類似した紛らわしい命名が沢山ある。表1に示した命名の病変は、①エナメル質表層に実質欠損は ないが、脱灰が疑われる場合、②あるいは実質欠損があっても侵襲がエナメル質に限局したう窩の場合 に対応している。ただし少なくとも「隠れう蝕」は、初期病変の場合と進行した病変の場合の両方があ り得る。

本章で定義したエナメル質初期う蝕(表層下脱灰)について最も強調したい点は、この病変のみが再石 灰化回復が可能であり、実質欠損が存在する場合には再石灰化は期待できないことである。その理由は、 第14章で詳しく解説する。

なお日本の学校歯科保健で独自に使われている CO(要観察歯)の定義は,平成14年日本学校歯科医 会理事会で以下のように定められている²⁹⁾。ただし一部の専門家では,実質欠損がエナメル質に限局し た場合(C1)でも,これを初期う蝕と言うこともあるので,誤解を招かないよう注意が必要である。

小窩裂溝において、エナメル質の実質欠損が認められないが、褐色窩溝等が認められるもの。

- ・平滑面において、脱灰を疑わしめる白濁や褐色斑が認められるが、エナメル質の実質欠損(う窩)の確認が明らかでないもの。
- ・精密検査を要するう蝕様病変のあるもの(特に隣接面)。

しかし白斑を認めたからといって、それが初期う蝕とは限らないことに注意が必要である。すなわち 非脱灰性白斑が一定の頻度で見られるからである。もし非脱灰性白斑を歯科医が初期う蝕と診断してフ ッ化物塗布やプラーク・コントロールを患者に勧めたりしても、全く再石灰化の効果は現れない。歯科医 への信頼を揺るがす重大な問題である。

ここで筆者らの実験結果をもとに、肉眼的に白斑を認めるが、明瞭な形態的異常や実質欠損を認めない、非脱灰性の白斑と判断されたサンプルについて観察した結果を紹介する。筆者らが非脱灰性と判断した基準は、①白斑が歯面の中央部付近または切端付近(歯肉辺縁は除外)に見られる場合、②白斑の

形状が明瞭な斑状や帯状を呈している場合,③表面のツヤが健全面に近い滑沢な場合,④白斑の部位と 健全部位との境界が比較的明瞭な場合:これらすべてを満たすエナメル質をサンプルとした。非脱灰性 の白斑と判断された抜去歯(永久歯15本.25ヶ部位)について、実態顕微鏡による観察とその切片のミ ネラル密度(TMR 解析法)の測定を行った。その結果,24ヶ部位において,TMR 解析法で測定されたミ ネラル密度は白斑のない健全部位と同じであった³⁷⁾。この結果から、非脱灰性の白斑を判断する上で参 考になるポイントは、①非脱灰性白斑は比較的高い頻度でみられる、②どの歯でも見られる、③左顎と右 顎で対称的に見られる場合がある、④エナメル質表面がツルツルしている、⑤脱灰されそうもない部位 での白斑(歯切端など),⑥白斑部位と健全部との境目が明瞭,である。筆者の知る限り,このような非 脱灰性の白斑に対する正式な病名は与えられていないが.恐らく軽度なエナメル質形成不全あるいは石 灰化不全(Hypomineralization)と思われる。

図2に筆者らが観察したサンプルの1 例を示す。図の左は、写真では明瞭に見 えないが.2つの白斑が存在する(矢印と 黒四角のあいだ)。中央は、その白斑を含 む部位を長軸に切断した切片の実態写真 である。矢印の部位に2つの白斑が認め られる。右は、その切片の TMR 画像で ある。エナメル質の白さは一様で、ミネ ラル密度が低下した部位は見当たらな い。ちなみに QLF 法にて, 脱灰性白斑と 非脱灰性白斑の識別ができるかどうか検

割断面の画像:明瞭 実態写真:二つの黒い な白色

<u>TMR 画像:</u>ミネラル密 度の低下を全く認めず

討した。QLF法はエナメル質初期う蝕(脱灰性の白斑)を定量的に評価できる装置である³⁸⁻⁴⁰⁾。QLF法 にて非脱灰性の白斑部位を画像観察すると、ほとんどの部位で「脱灰を示す蛍光強度の減少」を認めた (偽陽性)。このことは、QLF法でも正しい診断は困難であることが示唆された。この識別法の確立は、 フッ化物による初期う蝕(エナメル質白斑)の再石灰化効果を検討するためには重要と思われる。しか しながら筆者の知る限り、両者の識別法を詳しく検討した研究は見当たらない。

マーカーの左に白色

本章の前半でも、表層下脱灰を呈する病変は再石灰化が可能と述べた。しかし全ての表層下脱灰病変

が再石灰化できるとは限らないし、事実、臨 床的に確認されていない。例えば、図3で示 したように軽い(前期の)初期う蝕は再石 灰化可能であるが,進行した初期う蝕は果た して再石灰化可能であろうか。この図3で 示した「進行した初期う蝕」は、いわゆる

「隠れう蝕」かも知れない。残念ながらこ のような白斑の経年的変化を追跡した研究 は、非常に少ない。筆者らはF歯磨剤による 再石灰化の臨床研究にて、軽度の白斑を約1 年間観察したが、白斑の改善(再石灰化の進

行)は予想したより少なかった⁴¹⁾。Mattousch らは, 矯正終了後の歯面で見られた 351 の白斑を 2 年間 にわたって観察した⁴²⁾。その間, 被験者への特段の介入は行わなかった。その結果, 大半(171)の白斑

(48.7%) はほとんど変化せず現状維持であったが,145 白斑(41.3%) が改善した。その中で10の白斑 が完全に消失した。しかし35の白斑(10%) が悪化した。

ここで、エナメル質初期う蝕の定量的評価法につい て追記する。フッ化物などのう蝕予防剤や再石灰化促 進剤などの有効性をインビトロ条件下あるいは臨床的 に評価しなければならない必要性は高い。また上述の 機器を用いた初期う蝕の診断システム(Diagnodent, QLF, ECM, OCT, FOTI など)の妥当性(validity)や再 現性を評価する必要性もある。このようなとき、通常、 TMR 法で得られた結果を真値(gold standard)として 診断システムの妥当性を評価する。TMR 法の詳細な方 法論は、別の機会で解説する予定である。図4に TMR 法にて定量的に評価できるパラメータを示した。この 図は、エナメル質サンプル試料を約 100 µm の厚さの切 片に研磨し、この切片を柔エックス線にて撮影した画 像を解析することで得られる。5 つのパラメータが表

示されている。①脱灰深さ:深さの定義は次のように定められている。健全エナメル質の体積密度は約 87 vol%(volume/volume)⁴³⁾であるが,エックス線の検出感度の限界や測定誤差(5%)を勘案して,そ の値の 95%に相当するミネラル密度に対応した深さを脱灰深さとする。従ってそのときのミネラル密度 は約 83%である。②脱灰量:健全エナメル質密度(83%)の水平ラインと脱灰後のミネラル・プロファイ ル(曲線)とで囲まれた面積である。単位は vol%×μm(これを ΔZ,または Integrated Mineral Loss; IML と表記)である。この数値は,脱灰状態を表す最も重要なパラメータである。③表層の厚さ:一般的な 定義はないが,エナメル質表面から最低ミネラル密度までの深さである。④表層での最大ミネラル密

度:再石灰化の進行に影響を及ぼすことが知られている(第13 章を参照)。⑤病変での最低ミネラル密度:う窩に至るリスクと 関係しているかも知れない。

ここでなぜ vol%という単位を用いるか,簡単に説明する。脱 灰・再石灰化現象を考えるとき,エナメル質表面から内部への酸 の浸透効率あるいは再石灰化に必要な,病変内部へのミネラルイ オンの浸透効率が,これら2つの現象の程度に大きな影響を及ぼ すからである。すなわち脱灰・再石灰化現象は、ミネラルイオン が歯質内でどのような速度で動くかに依存している。その速度

(あるいは浸透率)は、空隙率(porosity)が大きいほど大きくなる。従って空隙率は、脱灰・再石灰化現象を支配する要因の1つである。空隙率とは、図5で示すように問題にしている体積(V)

に対して,隙間が占める体積(赤い球で表示;それ以外はエナメル質結晶が占める体積)の割合として定

義される。また空隙率は、歯質の硬さも敏感に反映する。上で健全エナメル質の体積密度は約87 vol·%と述べたが、残りの体積の大部分は、湿潤状態では水分であるが、有機質分がわずかに(約1 vol%)含まれている。

それではなぜ重さの単位(weight/weight %または weight/volume %)で問題が起きるか。もし銀(Ag) やストロンチウム(Sr)のような、Caより重い元素が再石灰化の反応プロセスで歯質サンプルに取り込ま れたとする(これをAとする)。一方サンプルBではCaだけが取り込まれたとする。再石灰化後、仮に 両サンプルAとBで空隙率が同じとする。もし重さの単位で再石灰化率を評価すると、サンプルAの方 が高い再石灰化率と評価される。しかし歯質の硬さおよびエナメル質組織としての欠損率(この場合、空 隙率の同義)は同じと考えられる。重さで評価すると、再石灰化の程度が過大評価されることになる。

第11章:表層下脱灰の形成メカニズム

さてここでエナメル質の脱灰を考える上で,最も厄介な問題の1つであり,また不思議な現象である 「表層下脱灰」がどのようなメカニズムで起きるか,幾つかの仮説を紹介する。科学には,その現象が 不思議であるからこそメカニズムの解説に迫られる。この問題に関して,古くは1960年代¹⁾から1990 年代まで継続的に研究され,多くの研究者がそのメカニズムの検討結果を報告している。その中で Anderson らは,歴史的経緯を踏まえて,様々なメカニズムを紹介している²⁾。本章では彼らの報告も参 照しながら,筆者が知り得た論文や情報も加えて解説する。筆者の理解では,大きく分けて4つの考え 方(仮説)が見られる。これらの仮説は全く独立したものではなく,それぞれの特徴の有しながら相互 に関係し合っている部分がある。

<1> エナメル質の表層と内層での酸溶解性の差に起因する説

この溶解性の差の要因としては、内層と比べて表層での高いミネラル密度が考えられる。Weidmann ら はヒト永久歯のエナメル質の表層と内層での密度の違いを検討し、表層のミネラル密度は 3.00 g/cm³ で あり、内層の深部では 2.84 g/cm³と報告した³⁾。He らも、若年者(18-24 歳)と高齢者(55 歳以上)にお

いても⁴⁾, さらに Wong らは乳歯においても同様の密度 差の存在を確認した⁵⁾。ミネラル密度が高いことは, 恐 らくエナメル質の結晶性も表層で高いと推察される。ま たミネラル密度が高いということは, 空隙率が小さいこ とを意味する。すなわち酸に曝された場合, 表層におい てはこの酸を含む液体とエナメル質結晶との接触面積 が小さくなるため, エナメル質の溶解性が内層より低く なることが示唆される。

図1 エナメル質に吸着した水分量(%)25℃

Moreno らは、ヒトエナメル質の空隙率についてエナ

メル質表層と内層(ED境)での違いを検討した⁹。18歳の側切歯と25歳の臼歯について,これらの部位のエナメル質を調製し,水分の吸着量を測定した。その結果,内層では表層と比べて2倍強の高い吸着量(空隙)が認められた(図1)。また空隙には大きいサイズと小さいサイズの2つに分極した分布が認められ,犬歯では0.7 nm と 1.3 nm に,臼歯では 1.0 nm と 2.5 nm に最大値を有する構造となっている。

さてエナメル質の結晶性に関係する成分として炭酸イオンや Mg イオンが知られている(第1章の表

1)。Robinson らは、エナメル質の表層と内層における Mg イオン濃度の違いを分析した。その結果、内層 より表層においてその濃度が低いことを確認した⁷⁾。その報告の中で、Mg 濃度が低いほどミネラル密度 が高いこと、および Mg 濃度が高いほどエナメル質に含まれるタンパク質の量も多いと述べている。また Kusabe らも、異なっ児童被験者(健常者、脳性麻痺の患者、ダウン症患者)から脱落乳歯のエナメル質に 含まれる Mg 濃度に関して、異なった深さ(表層、中層、EDJ 付近)における Mg 濃度を測定し、被験者の あいだでの違いを検討した。その結果、どの被験者においても表層<中層<EDJ の順番で Mg 濃度の上昇 を認めた。さらに健常者と比べて両患者において、どの層でも Mg 濃度の高い傾向が認められた、疾患と の関連性が疑われた⁸⁾。こうした知見から、エナメル質の形成や成熟過程に、Mg およびタンパク質が重要 な役割を演じていることが示唆される。

またエナメル質表面に様々な外来性の物質が吸着して,脱灰抵抗性を付与することが考えられる。例 えば,唾液由来のペリクル膜の形成⁹,あるいは第7章で解説したようにフッ化物の沈着(第12章で詳 しく言及)やポリリン酸イオン^{10,11}の吸着が考えられる。

さらには人工的には diphosphonate (図 2) のような有機リン酸化合物(これを脱灰抑制剤という)を脱灰液に添加すると, 脱灰が抑制される¹²⁻¹⁷⁾。この図において R は様々な炭素と水素から成る側鎖を示す。この化合物には, PO₃H₂が中心

ORO		ORO		
н-о-р-с-р-о-н	⇔	н-о-р-с-р-о-н	+	2H
Н- <mark>О Н О</mark> -Н		-0 H O-		
Z Diphosphor	nate σ_{i})分子構造とイオン	化	

の炭素(C)に2つ直接結合している。このPO₃H₂はイオン化して1価の陰イオン(PO₃H)となる。その脱灰抑制メカニズムは、この化合物の2つリン酸基がHAのCaサイトに強く吸着することによると考えられる。この場合、低濃度領域(5 mmol/L以下)では脱灰抑制作用は確認されたが、高濃度領域(25-100 mmol/L)ではむしろ脱灰を促進したという¹²⁾。これは、恐らく脱灰液に溶存しているCa²⁺とdiphosphonateとが強く結合して、遊離のCa²⁺濃度が減少して、飽和度が減少した結果によると推察される。

余談であるが, diphosphonate には人工プラークや *in-situ* 環境下での研究にて, 細菌による酸産生能の抑制効果も発揮しているとする見解も見られる^{12,13}。これは, 糖類が酸に代謝されるときのエノラーゼ

(enolase)の活性を抑制することによると推察される。この酵素は, Mg 要求酵素であり, diphosphonate は Mg と強く結合することで酵素活性の低下が起こったと考えられる。

さて「エナメル質の外層と内 層とで酸溶解性に違いがある」 とすれば、どのようにして表層 下脱灰病変が形成されるか、図 3を用いて説明しよう。エナメ ル質が酸に曝されると、その表 面付近の液体(外界)に存在す る水素イオン濃度(H⁺)が高 まる。エナメル質は塩基性なの で、その内層と外界のあいだで H⁺の濃度勾配が発生する。す

図3 エナメル質の表層と内層での酸溶解性の差に起因する説

るとこの濃度勾配のため H⁺が内層に拡散する。またエナメル質の構造にはエナメル小柱鞘(約0.1 µm の隙間)が存在し、そこでのミネラル密度は低い(すなわち空隙率が高い)。そのため、H*はこの小柱鞘 (通路) に沿って優先的に拡散する。

表層は相対的に酸に溶けにくいと想定しているので、このようなミクロの世界では表層のエナメル質 結晶が完全に溶解する前に H*は内層に拡散する余地がある。内層に拡散した H*は、その環境が高い塩 基性なので直ちに塩基との中和(溶解)反応が起きる。するとアパタイトから Ca²⁺とリン酸イオンが溶 け出し、空隙率の高いエナメル小柱鞘でそれらのイオン濃度が上昇する。この濃度は、エナメル質表面 付近(外界)に存在する脱灰液に含まれる Ca²⁺とリン酸イオンより高くなる。その結果,その濃度勾配 によって内層から外界に向かって、これらのイオンが拡散する。一方で脱灰の最前線ではH+が消費され てその濃度が低下する。すると内層と外界の脱灰液のあいだで H⁺の濃度差が再び生じ、その濃度差に沿 って H⁺がふたたび内層に拡散し、Ca²⁺とリン酸イオンを溶かし出す。このような繰り返しが連続的に起 こり、脱灰が内層で優位に進行し、表層下脱灰病変を形成する。その過程で表層のエナメル質も少しず

つ溶解し、健全エナメル質の密度より低下する(第10 章の図4)。図4に人工的に作成した表層下脱灰病変 のTMR 画像を示す。左上から右下に沿って、黒い筋が 確認できる(筆者らの資料;未公開)。この筋は、エ ナメル小柱鞘の周辺が溶解してミネラル密度が低下し た部分であろう。表層のミネラル密度は、平均的には 内層より高く見える。

この仮説は、上述したようにエナメル質の表層と内 層での酸溶解性の差に拠っている。しかしながら筆者 らの経験では、表層と内層において酸溶解性が、ほとん

どまたは全く存在しない人工的条件でも表層下脱灰の形成が可能である。例えばエナメル質の表層を相 当深く研磨除去して, 脱灰液の条件(ミネラルイオン濃度と pH)を適切に選定すれば, 表層下脱灰を作 成することは可能である^{18,19)}。あるいは合成 HA の粉末の高圧凝集体(ペレット)でも作製可能であ る。この凝集体の場合、表層と内層での酸溶解性の差あるいはエナメル小柱鞘のような拡散の通路も存 在しない。ただし表層の存在はエナメル質と比べてやや不明瞭である^{20,21)}。従って、この説の主眼であ

る「エナメル質の表層と内層での酸溶解性の差」は、必ずしも必 須用件ではないが、形成されやすさの要因の1つであろう。

最後に、表層と内層での酸溶解性の差を視覚的に知ることがで きる写真を紹介する(図5:未公開資料)。臼歯のエナメル質表 面をダイアモンド·ポイントにて縦方向に軽く数本のキズを付け た後, 表層下脱灰の病変を形成できる脱灰液(0.1 mol/L 乳酸, 1.0 mmol/L CaCl₂, 3.0 mmol/L リン酸イオン, pH4.3) に 24 時間浸 漬して脱灰した。その結果, キズの部分が優先的に脱灰され, 白 い線として確認できた。この部分を探針で軽く擦るだけで白い 粉が取れてきた。キズを付けていない表面では、ほぼ元の滑沢性

図4 エナメル小柱鞘に沿って脱灰が優先的に進行

図5 エナメル質にキズを付けた後の 脱灰の様子

が認められ, 硬い表面状態を維持していた。またこの図にて歯冠部と歯根部の境に沿って, エナメル質

(キズは付けていない)でも矢印で示したように、白い脱灰の痕が認められた。これは、歯頸部のエナ メル質は、歯冠部のそれより脱灰されやすいことを示唆している。歯頸部は、う蝕の好発部位の1つで あるが、必ずしもプラークが蓄積されやすいからだけではなく、もともと酸に溶けやすい性質が関与し ているかも知れない。

<2> 脱灰の最表層での再石灰化沈着説

この説についてモデル(図6)を用いて解説する(暗いエリアでミネラル密度が低い)。エナメル質の 表層が弱い酸に曝されると,表層付近で脱灰が起きて,明瞭な表層を持たないスポンジ状の脱灰病変が つくられる(図6の左)。このような脱灰が繰り返し長く続くと,100 µm レベルの深いスポンジ状の脱灰

病変(softened lesion)となる。実際,抜去歯でも類 似の脱灰病変を認めることがある^{22,23}。その後,プ ラークコントロール,砂糖摂取の制限あるいはフッ 化物の利用などにより,口腔の環境が再石灰化しや すい環境に変わり,プラーク液はHA あるいはFA に関して過飽和になる。するとスポンジ状の脱灰 病変の表層付近でHA あるいはFA が再石灰化沈着 する。こうしてエナメル質の表層が形成される

(図6の右)。実際、インビトロで作成したスポン

図 6 スポンジ状の脱灰病変の表層が再石灰化され, 表層下脱灰病変に変化するモデル図

ジ状の脱灰試料を、フッ化物に曝すことなく再石灰化液に浸漬すると、典型的な表層下脱灰病変が得られることを筆者は経験している。フッ化物を使用すればもっと顕著な表層下脱灰病変となる。しかしながら *in-vivo* あるいは *in-situ* 条件下にて、このような変化を観察した報告は、筆者が調査した範囲内では見当たらなかった。

<3><u>DCPD 形成説</u>^{24,25)}

この仮説は, Moreno と Margolis らのグループによっ て理論的および実験的根拠に基づいて提案された ^{24,25)}。この仮説は, 上の 2 つの仮説と比べるとやや難 解である。これを理解するためには, かなり専門的知 識が必要となる。そこで図 7 と<u>ステップ</u>表を用いて, その要点だけを説明する。

エナメル質表面がプラークで覆われ、比較的強い酸 (pH5以下)が産生されたとする。ステップ①:エナ メル質表層では、HAの一部が酸の影響を受けて DCPD (CaHPO4·2H₂O)に変化する。これは、pH が 5.0 付近 より低い pH 領域では、エナメル質アパタイトは結晶 として不安定になり、より安定な DCPD に変化する傾 向にあるからである(第2章の図2を参照)。この図2 では HA と DCPD の交差する pH は、4.5 付近と読み取 れる。エナメル質の熱力学的溶解度積(Ksp = 10^{-55.26})

ステップ6:脱灰巣(表層下脱灰)の形成

図7DCPD が関与した表層下脱灰病変の形成仮説

は、HA(Ksp = 10⁻⁵⁸⁴)より大きい(第4章の表2を参照)。従って交差するpHは、4.5より高くなり、5.0 付近と推定される。しかし DCPD も一定の酸溶解性を有しているので、徐々ではあるが、溶解が進む。こ の状態ではアパタイトの脱灰は、やや抑制された状態で維持される。<u>ステップ</u>②:エナメル質表面の外界 では、酸性の液体が存在し、H⁺の濃度が高い状態にある。そのため濃度勾配に従ってエナメル質内層に向 かって H⁺が拡散(浸透)する。<u>ステップ</u>③:エナメル質内層では、この拡散してきた酸によってアパタイ トが溶解する。<u>ステップ</u>④:この溶解により、内層ではミネラルイオン濃度(Ca²⁺/HPO4²)が上昇し、ミ ネラルイオン濃度の低い外部の液体(プラーク)とのあいだで濃度勾配が発生して、ミネラルイオンは外 部に向かって拡散する。<u>ステップ</u>⑤:外部に向かって拡散するミネラルイオンは、表層にできた DCPD と 反応してアパタイトが形成される(恐らく epitaxy 現象;第13 と 14章で言及)。こうして DCPD がエナ メル質表層の過度な脱灰を抑制し、またエナメル質内部で溶け出たミネラルイオンをアパタイトとして 結晶化沈着(一種の再石灰化現象)を助けることで、表層が形成される。このようにして形成された表層 では、エナメル質の結晶性が改善さる^{25,26)}。この結晶性の改善は、多くの研究で確認されていることから、 この DCPD 仮説の妥当性は部分的に支持される。

ここで注意しなければならない点が2つある。第1は,脱灰液のpHが5.0付近より高い条件の場合で は DCPD は形成されず,スポンジ状(あるいはう窩状)のまま脱灰され,表層下脱灰に至らないと予想さ れる。実際,彼らはpH(4.26~6.14)の異なった脱灰(HA に関して50%の不飽和度)を調製し,エナメ ル質を脱灰して脱灰病変の形態を観察した。その結果,脱灰液のpHが5付近より高い場合は,う窩とな り,それより低い場合は表層下脱灰となることを報告した²⁷⁾。すなわち DCPD の形成は必須用件であり, その形成が許される pH 領域での脱灰となる。実際,僅かであるが, DCPD の形成は確認されている²⁷⁾。 一方で別の研究では,脱灰病変内部では DCPD は認められたが,表層では確認できなかったとする報告 も見られる²⁸⁾。これは,表層での DCPD の形成量が少なかったかも知れない。

砂糖の代謝で産生される酸の強度は比較的強く, プラーク pH は十分 5.0 より低くなり得る。図 8 に, 3 つの状態(う蝕のない 歯面: SOUND, 非活動性のう蝕歯面: INACTIVE, 活動性のう 蝕歯面: ACTIVE) において, 10%砂糖液を口に含んだ後のプラ ーク pH の時間的推移を示した²⁹⁾。ACTIVE のプラークでは, pH が 5.0 付近より低い時間帯が認められる。

注意点の第2は、外界の脱灰液中のミネラルイオン濃度が小 さすぎる場合、高い濃度勾配のため内部で生じたミネラルイオ ンの拡散速度が速くなり過ぎて、表層でのアパタイト結晶の沈 着が十分に起きず、表層が形成されることなく、う窩状の病変と なる。この拡散速度に影響する因子として、最も大きいものは 脱灰液(プラーク液)に含まれるミネラルイオン濃度である。 この濃度は、脱灰液の飽和度(第3.4.5章を参照)を決定する

因子の1つである。すなわちその濃度が高いほど飽和度が高くなり、ミネラルイオンの拡散速度は遅く なり(脱灰しにくくなり),表層が形成されやすくなる。またペリクルやプラークそのものが物理的膜 あるいは粘性膜として機能し,その結果,拡散を抑制するバリアーとなって表層が形成されやすくなる ことも考えられる¹⁴⁾。DCPD 仮説では、このような第1と2の条件は実際の口腔で常に満たされている と考えられる。

ここで、この仮説においてエナメル質の表層で DCPD が形成されるプロセスを図9にて解説する。こ こでは次の2つを前提とする。①エナメル質(HA) あるいは DCPD は、下記の式のように酸性のリン酸 (H₃PO₄) とアルカリ性の水酸化カルシウム Ca(OH)₂ とから構成されていると見なすことができる。 ②それぞれの結晶は、水において一定の溶解度積(エナメル質:

> HA: $5Ca(OH)_2 + 3H_3PO_4 = (Ca)_5(OH)(PO_4)_3 + 9H_2O$ DCPD: $Ca(OH)_2 + H_3PO_4 = (Ca)(HPO_4) + 2H_2O$

Ksp=10^{-54.26}; DCPD: Ksp=10^{-6.59})を有しており,そのため両結晶の 酸溶解性は,それぞれの溶解度積の支配の影響を受けて挙動す る。そこでまずこの2つのことから,横軸(x軸)を(Ca)(OH)²の 化学ポテンシャル(p),縦軸(y軸)を(H)³(PO₄)の化学ポテンシ ャル(p)とし,HAおよび DCPD の溶解度積を用いて p(Ca)(OH)² と p(H)³(PO₄)の関係を作成する。この図に示した2つの関係式 (実線と点線からなる2つの直線)の導き方は,引用文献を参照さ れたい^{24,25)}。ここで p は,HA あるいは DCPD が溶解して平衡状態 にあるときの構成イオン(Ca²⁺,OH⁻,H⁺,PO₄³⁻)の活量の積の対数 である。ただし p は,その対数値にマイナスの符号を付して表さ れる。この場合,それぞれの化学ポテンシャル(p)は,HA あるい は DCPD の形成反応を引き起こす原動力と見なすことができる。

図 9 表層下脱灰病変の形成プロセス を説明する chemical potential 図

この図9において、それぞれの直線の上の領域では、そのリン酸カルシウムに対して過飽和を、下の領 域では不飽和であることを示す。次いで、任意の脱灰液についてその組成に対応するp値を求めてこの 図にプロットする。この図では、その任意の脱灰液のp値をAにプロットしてある。ここからエナメル 質(HA)の脱灰が始まり、Aから点線上のBの点に移る。ここではエナメル質の溶解性に関して平衡状 態(これ以上、溶けない状態)にある。しかし DCPD に関しては過飽和であるので、DCPD が形成(析 出)されて実線上のCの点に移る。ここでは DCPD の溶解性に関して平衡状態(これ以上、析出しない 状態)にあるが、一方で再びエナメル質の溶解性に関して不飽和であるので、エナメル質は点線上の平 衡状態になるまで溶解する。同様な「溶解と析出」がエナメル質と DCPD のあいだで繰り返され、最終 的にエナメル質と DCPD の溶解性が一致する点(S: Singular point)まで脱灰反応が進む。すなわちこの 点(S)でAの条件で開始した脱灰液は、エナメル質と DCPD の両方のリン酸カルシウムに関して平衡 状態になる。脱灰開始の点(A)の溶液条件である pH やミネラルイオン濃度を、実線の下の範囲内(エ ナメル質に関し不飽和の条件)で変更しても、Sにおける pH は常に 5.0 付近となることが計算で確かめ られている。つまりこの図で分ることは、ある濃度の Ca²⁺とリン酸イオンを含む脱灰液(pH5.0 以下) でエナメル質を脱灰すると、エナメル質表層には DCPD が必ず形成されるということである。

上記にて,表層下脱灰の形成メカニズムに関する仮説を紹介したが,その病変は経時的にはどのよう 変化するのか,筆者らはある特定の条件下で同一サンプル(切片)を経時的に追跡し,その様子を観察 した¹⁸⁾。すなわちエナメル質の薄切片(約100 μm)の両面を樹脂で被覆し,脱灰されるエナメル質面だ けを露出させ、この面を表層下脱灰が形成される脱灰液に浸漬し、脱灰病変の経時的変化(1~5日間) を TMR 画像 (図 10 の左) にて観察した。

次いでこの画像から表層の厚さ、脱灰の深さ、表層の最大ミネラル密度および病変内部の最低ミネラ

エナメル質

象牙質

エナメル質

象牙質

ル密度を計測した(第10章の図4を 参照)。その結果, 脱灰の深さは脱灰日 数とともに深くなったが. 表層の厚さ はほとんど変化しなかった(図10の 右)。一方,病変内部の最低ミネラル密 度は. 脱灰日数とともに低下したが. 表層の最大ミネラル密度はほとんど変 化しなかった(図11の右)。

このような特異な変化が、どのよう な理由で起きるか。筆者は以下のよう に推察している。上述の仮説3に従い、 表層では DCPD の形成とそれに伴う表 層の形成が起きる。この表層で新たに 再石灰化によって形成されたアパタイ トは、もともとのエナメル質アパタイ トより結晶性の良い(酸に溶けにく い) アパタイトと考えられる。従って 表層での脱灰は、それほど顕著には進 まない。一方,酸(H⁺)は拡散によっ

て病変内部へ浸透し、より溶解しやすい内部のエナメル質 アパタイトを溶解し続ける。

こうして病変内部では、ミネラル密度の低下が進み、同 時に脱灰最前線は深部へと進む。そのように進行する表層 下脱灰病変の時間的推移をモデルとして図12に示した。 このような現象は、第6章で言及した「隠れう蝕」の形成 メカニズムと同じと筆者は考えている。

<4>フッ化物の影響による FA 沈着

この仮説は、第7章の「脱灰液に含まれるフッ化物イオ ンが脱灰に及ぼす影響」にて、脱灰条件(ミネラルイオン F濃度など)によって、表層下脱灰が形成されることを解 説したので,重複を避けるためここでの解説は、省略する。

ここで上記の4つの仮説とは別の観点から, 脱灰現象を支配するメカニズムについて言及したい。それ は、脱灰(溶解)速度を支配する因子は、アパタイト結晶が溶解する速度か、それとも溶解したミネラル

2

脱灰日数

3

図 10 エナメル質切片に形成された人工初期う蝕の経時変化

ネラル密度

図 11 エナメル質切片に形成された人工初期う蝕の経時変化

500µm

60

40

20

0

イオンが外界へ拡散する速度か,とういう疑問である。これを一般に「律速段階」という。HAの脱灰現 象に関しては、これまで2つの律速段階の可能性が議論されてきた。第1は、HAの結晶表面からミネラ ルイオンが脱離する段階の速度(surface-controlled process)である。具体的には、エナメル質の結晶表面 で、酸(H⁺)とアパタイトの結晶格子のイオン(PO4³,OH)とが反応して、これらのミネラルイオンがア パタイトから脱離する速度である。すなわちH⁺とOHあるいはPO4³⁻とが反応して、H₂OあるいはHPO4²⁻ やH₂PO4⁻が形成されるプロセスである。同時にCa²⁺が離脱するプロセスも含まれる。第2は、脱離した ミネラルイオンが、HA結晶を取り巻く外界の脱灰液に拡散する段階の速度(diffusion-controlled process) である。後者の場合の例として、3つ挙げる。①脱灰液に粘性物質を加えて、粘性の高い脱灰液で脱灰す ると拡散速度は遅くなり、脱灰速度は遅くなる。②脱灰液に、ミネラルイオン(Ca²⁺、リン酸イオン)を加 えると、HAの結晶表面からの離脱した格子イオンの拡散が抑制され、脱灰速度が遅くなる。③アパタイ トを酸溶解すると、溶け出たミネラルイオン濃度が結晶の近傍で高くなって、その近傍の脱灰液は飽和 状態となり、それ以上脱灰は進行しなくなる(結果的に②と同じ)。

この2つの律速段階のうち, 拡散現象や拡散速度がエナメル質初期う蝕の形成や進行に深く関与して いるとする説を紹介する。Vogel らは非常に巧妙な実験を行って, 脱灰の律速段階は「拡散速度」である と報告した³⁰⁻³⁴⁾。彼らは自然に形成されたエナメル質初期う蝕の切片(厚さ400 µm)を作製し, そこに 直径 150 µm ほどの小さな 12 個の穴を掘り, 次いでエナメル質に関してほぼ過飽和の液体(pH5.57; K⁺

と CIとを含む) でその穴を満たした(図 13)。穴を掘った 部位は,初期う蝕病変の中心部と病変の一番深い底部およ び病変から離れた健全部位とした(図 13)。次いで,この切 片の両面を耐水性のシートで完全に被覆し,これをミネラ ルイオン含有の pH3.25 の脱灰液(エナメル質に関し不飽 和)に浸漬した後,平衡に達するまで待った(5~7 日)。平 衡後,穴の溶液の組成(pH やミネラルイオン濃度など)の 分析を行った。

図 13 初期う蝕病変のエナメル質切片に,いくつ もの小さな穴をあけた様子:黒い部分は脱灰病 変,白い部分は健全部位,その境界は病変の底 部

主な結果を表1に示した(原表を筆者が改変)。①健全部位以外のどの穴の溶液も,エナメル質に関してほぼ飽和状態であった(表中の-logI_{AP}の値が56.8~58.0)。②穴の内部液のpH値は,pH3.25の脱灰液に浸漬する前と比べて,若干の変動が認められた(pH5.57 \Rightarrow pH5.36~5.84)。③穴の内部液のCa²⁺とリン酸イオン濃度は増加した。④Ca²⁺とリン酸イオンの濃度モル比(Ca/P)は,1.52から1.8~2.14に増加した。⑤Cr濃度は増加し,K+濃度は低下する傾向にあった。⑥エナメル質表面では,マイナスの電位が増加した(逆に穴の内部液はプラスの電位となる)。

これらの結果に関して,以下のような説明が可能と考えられる。①に関して:もし律速段階が「ミネ ラルイオンの脱離速度(surface-controlled process)」とすると,穴を満たした溶液はエナメル質に関して 不飽和でなければならないが,実際にはほぼ飽和であった。つまり外部への拡散速度がミネラルイオン の脱離速度より遅いので,穴の内部でのミネラルイオン濃度が上昇し,ほぼ飽和状態となった。②に関 して:外部の脱灰液(pH3.25)がエナメル質の表層を介して穴に拡散侵入し,拡散途中あるいは拡散後 にエナメル質を溶解して,酸が中和され pH が上昇したと推察される。③に関して:エナメル質が脱灰 され,ミネラルイオン濃度が上昇した結果による。④と⑤と⑥に関して:Ca/P 比の上昇は,「Ca²⁺がよ

表1(1)脱灰前の穴を満たした液体組成,(2)脱灰液の組成,(3)エナメル質表層に近い病変の穴を満たした液組成, (4)病変の最深部に近い穴を満たした液組成

		рН	Ca: mM	全 PO ₄ mM	K+ mM	Cl ⁻ mM	Ca/P	膜電位: mV	-logI _{AP}
穴を満 たした液(1)	-	5.57	0.88	0.58	30	31	1.52	-	60.5
脱灰液(2)	-	3.25	0.22	0.14	30	31	1.52	-	81.5
表層に	直後 (n=4)	5.92 ± 0.1	1.0 ± 0.2	0.7 ± 0.15	30.0 ± 0	33.0 ± 0	1.4 ± 0.3	-0.25 ± 0.5	57.7 ± 0.3
近い穴(3)	3日後	5.38 ± 0.2	3.1 ± 0.4	1.6 ± 0.5	29.0 ± 0	35.8 ± 2.5	2.14 ± 0.6	-1.6 ± 0.25	58.0 ± 0.9
病変の最深 部に近い穴	直後 (n=3)	6.10 ± 0.1	0.6 ± 0.2	0.7 ± 0.1	30.0 ± 0	33.0 ± 0	0.9 ± 0.24	-0.1 ± 0.2	57.5 ± 0.4
(4)	3日後	5.84 ± 0.2	1.7 ± 0.8	1.0 ± 0.2	29.7 ± 0.6	35.7 ± 1.5	1.8 ± 1.0	-1.2 ± 0.3	56.8 ± 0.5

り多く, リン酸イオンはより少なく外界に拡散した」ことを示唆している。その結果, 病変内部では相対的に Ca²⁺濃度が高まってプラスの電位に傾き, 陰イオンである Clを引き付けてその濃度が増加したと解釈される。同様に Ca²⁺濃度が高まることで, 穴の内部液の電位はプラスに傾き, その結果, その電位とバランスを取るため, エナメル質表層の電位はマイナスに傾いたと考えられる。ただし内部液の電位とエナメル質表層の電位は, いつもこのように決まるのではなく, 脱灰液(あるいはプラーク液)に含まれる構成成分の種類やその濃度によって決まるという³⁰⁻³⁴)。例えば, *in-vivo* ではマイナスに帯電した唾液タンパク質がエナメル質表面に吸着することで, 表層電位はマイナスに傾くと考えられる。

この研究で最も重要な知見をまとめると以下のようになる。①脱灰期間中,内部液はエナメル質に関 して常に飽和状態に近いことは、「エナメル質内層での脱灰は、溶け出たミネラルイオンの拡散速度によ って支配されること、すなわち脱灰の律速段階は拡散速度」であることを示唆している。②つまり病変 内部での脱灰は、まず酸の浸入によって速やかにアパタイトの溶解が起こる(すなわち律速段階となら ない)。その結果、病変内部でのミネラルイオン濃度が上昇して、外界の不飽和の脱灰液とのあいだで濃 度勾配が発生する。この濃度勾配のため、エナメル質表層を介して、外界の脱灰液に向かってミネラル イオンの拡散が起きる。この拡散速度が病変内部でのアパタイトの溶解速度より格段に遅いため、この 拡散速度が全体の脱灰進行速度の律速段階となる。

ちなみに筆者は、これまで酸によってエナメル質初期う蝕エナメル質が形成されるとき、脱灰病変の 内部は外界の脱灰環境液(プラーク液)と同様の酸性と想像していたが、実際には pH は弱酸性レベル で脱灰が進行していることを知らされ、非常に驚いた。

このエナメル質表層の膜機能に関連して, Okazaki らは下記のように, 拡散現象の重要性を明らかにした²⁰。彼らは, 合成 HA 粉末を用いてペレットを作成し, これをイオン選択性の透過膜で覆い, 酢酸の 脱灰緩衝溶液(0.5 mmo/L, pH4.0)に浸漬して脱灰した(図 14)。そのときの透過膜として, 陰イオン 選択性の透過膜(Anion Membrane; A-M)を用いた場合と, 陽イオン選択性の透過膜(Cation Membrane; C-M)を用いた場合とで, 脱灰にどのような違いが生じるか検討した。A-M は, 架橋した R-NH+基(R は樹脂構造の骨格)を有する樹脂で, 陰イオンを交換する機能を有する。従って陰イオ ンはこの膜を通過できるが, Ca²⁺のような陽イオンは陽電荷同士の反発により, 通過しにくい。 一方 C-M は,架橋した R-SO3²基を有する樹脂で,陽イオンを交換する機能を有する。従ってイオン透

過性は、A-Mの場合と逆となる。その結果、6週間の脱灰 後、A-Mの場合には、内部液(透過膜とHAペレットとの 間に存在する溶液:図14)において、HAから溶け出た Ca²⁺が蓄積され、内部液中のCa/Pモル比(16.1)は、もと のHAペレットの値(1.61)と比べて10倍もの高い値を 示した。同時に、HAペレット表層部には再石灰化層が観 察された。一方、C-Mの場合には、内部液中のCa/Pモル比 (0.469)は、もとのペレットの値よりかなり低い値を示 し、再石灰化層は観察されなかった。A-M膜の場合、再石 灰化層が形成されたのは、A-M膜のイオン選択性のため外 界へのCa²⁺の拡散が抑制され、その結果、内部液でCa²⁺濃

図 14 選択性透過膜を用いた脱灰実験装置

度が上昇し、表層の形成(HAの沈着)に有利に作用したと考えられる。

A-M 膜を用いた場合, 内部液で Ca²⁺濃度が上昇したことは, 上述の Vogel らの結果と一致している。 この上昇は, 両実験において表層の形成あるいはその維持に関係していると推察される。

以上 Anderson らの論文²⁾を参照に,4 つの仮説を解説した。彼らは同論文で HA 以外の物質でも同様な 検討を行い,以下のような知見を得た。①Ca(OH)₂や Mg(OH)₂の固体ペレットを蒸留水に浸漬すると, 表層下脱灰が認められた。Leaist も同様な結果を報告している³⁵⁾。②ストロンチウムアパタイト: (Sr)₅(OH)(PO₄)₃でも,酸脱灰することで表層下脱灰を認めたが,バリウムアパタイト:(Ba)₅(OH)(PO₄)₃で は形成されなかった。これらの結果から,彼らは表層下脱灰の形成には,表層と内層の溶解性の違いは 必須用件ではなく,空隙を有する固体が溶解するとき,条件が整えば表層下脱灰は形成され,普遍的現象 であろうと推察している。しかし Anderson らは,上記の4 つの仮説を特徴づける要因は,表層下脱灰が 形成されやすい条件を付与していると結論づけている。筆者もどの仮説が最も臨床的に妥当性が高いか, 判断はむつかしいと感じる。恐らく上記の4 つの仮説(現象)が混在していると推察される。

これら4つの仮説は、インビトロでの検討結果をもとに考察されているが、インビボでの脱灰の進行 過程と比べて、少なくとも以下の点で異なる。①インビトロでは脱灰時間は数日から1ヶ月以内とかな り短い。それに対しインビボでは数ヶ月から数年と長い。②前者では脱灰一辺倒である実験条件である 場合が多いのに対し、後者では脱灰と再石灰化のサイクル変化での結果である。すなわち実際のプラー クではエナメル質が脱灰される時間はせいぜい 30 分以内である。その後、pH は中性付近に戻り、長い再 石灰化時間が続く。このサイクルが何度も繰り返し起こる。③細菌を関与させた実験系で、表層下脱灰 の形成を検討した研究報告は見当たらない。すなわち細菌あるいは細菌叢(バイオフィルム)が、表層 下脱灰の形成にどんな影響を及ぼしているか、不明な点が多い。④インビボでは歯質の表面積に対して 脱灰液となるプラーク液は、非常に少ない。大雑把な計算をしてみる。例えば1つの隣接面では、最大 限に見積もっても10 µL 以下で、プラークの厚みもせいぜい 0.5 mm 以下であろう。その面積も2 mm 四 方(4 mm²)であろう。それに対してインビトロでは、通常、脱灰液が大過剰に多い。例えば4 mm²のエ ナメル質の面積に対して脱灰液は1 mL (1000 µL) 程度は使用している。するとこれをプラークの厚み として換算すると 25 mm となり、実際のプラークの厚みの 50 倍となる。プラーク液を10 µL とすると 約 100 倍の液量となる。すなわち 50~100 倍もの酸の体積量に、長時間にわたって曝されることにな る。この推定が妥当とすれば, 脱灰現象に対して, インビボとインビトロでは大きな違いが生じると考 えられる。その理由は, 上述したように, 脱灰現象(速度や病変の形態)は, エナメル質への酸の進入拡 散および溶解による酸の中和とミネラルイオンのプラークへの拡散などの物理化学的変化の程度によっ て, 大きく左右されるからである。従ってインビトロの条件下で, う蝕の発症・進行あるいは表層下脱 灰の形成メカニズムの真の姿を知ることは, 容易ではないように思える。このように, インビトロでエ ナメル質の脱灰現象を研究したときに得られる結果と, インビボで起こっている複雑・多岐な現象のと あいだに乖離が存在するという問題が付きまとうが, それでも一定の科学的知見は得られると, 筆者は 信じている。

以下に、インビトロにて表層下脱灰病変を人工的に作成する方法を紹介する。現在も、このうちのど れかをの方法を用いて、種々の研究に貢献している。ただしヒトエナメル質と牛エナメル質とでは、脱 灰条件がかなり異なる。牛エナメル質の表面はセメント質で覆われている場合があるので、必ず表面を 研磨して使用すべきである。またヒトエナメル質でも表面を研磨した場合としない場合とでは、脱灰条 件が異なることにも注意が必要である。

- 1) 上記の仮説3に準拠して, DCPDの形成が可能なpH(5.0以下)で脱灰液を調整し, かつミネラルイ オン(Ca²⁺, リン酸イオン)の拡散を遅くするよう, これらのイオン濃度の高い(飽和度の高い)脱灰 液で脱灰する。
- 2) 脱灰液にミネラルイオンが全く含まれなくても、脱灰液にゲル化剤を配合して粘性を高くし、エナメル質内部から外部へのミネラルイオンの拡散を抑えた状態で脱灰する。これは上記の仮説3に対応する。ゲル化剤として、カルボポール、ハイドロキシエチルセルロース、カルボキシメチルセルロースなどがよく使用される^{35,36}。脱灰液の粘性が高くなるので、pH 調整が困難となることやこれらの添加物に含まれる不純物の影響を受ける欠点がある。
- 3)同様に、脱灰液にミネラルイオンが全く含まれなくても、エナメル質表層での脱灰を抑制するため有機リン化合物を脱灰液に微量添加することで可能である。これは上記の仮説1に対応する。添加物として例えば、EHDP(ethan hydroxyl di-phosphonate)などがある¹²⁻¹⁷⁾。これらの分子は、エナメル質表層に存在するアパタイト表面に強く吸着しその脱灰を抑制する。しかしその強い吸着性のため、この分子のエナメル質内層へは進入しない。結果的にエナメル質内層での脱灰が優位になり、表層下脱灰が形成される。しかしこの方法で作成した表層下脱灰サンプルでは、吸着した有機リン化合物が、その後、その実験の目的に不測の影響(例えば再石灰化の妨害)を及ぼすことがあるかも知れないので、注意が必要である。
- 4) ミネラルイオンを含む脱灰液に ppm またはサブ ppm レベルの Fを添加し、表層での FA の形成・沈着を促進して表層下脱灰サンプルを作成する(これまで多くの論文を紹介したので、ここでは文献引用は省略)。このサンプルを用いてフッ化物による再石灰化の実験をする場合、添加した Fの影響が、実験者が得たい結果に対してどのような影響を与えるか分らないという欠点がある。

これまで表層下脱灰の形成メカニズムについて, エナメル質を舞台として解説してきた。実は象牙質 も同様な表層下脱灰病変が認められる。図 15 に, 抜去歯で見つかった脱灰病変の実画像(左)とこれを 切片にして撮影した TMR 画像(中央と右)を示した(筆者らの非公開資料)。実画像では, 顕著なう窩 は認められず, 褐色を呈している(leathery)。中央は, 実画像の着色部を含む患部面から得られた TMR 画像である。同画像で赤色の点線で囲った病変が実画像の着色部に対応する。青色の点線で囲った病変 は、実画像の面の裏側に対応する。右の TMR 画像は、中央の右側の TMR 画像を拡大したものである。

拡大した TMR 画像でも, 明瞭な表層(表層下脱灰 病変)を認める。また中央の TMR 画像の左側に もエナメル象牙境に小さな表層下脱灰病変が認め られる。ここで見られる表層下脱灰の形成メカニ ズムは, エナメル質で述べた4つの仮説のいずれ と対応しているだろうか。

仮説1の「外層と内層の溶解性の差」について はどうか。象牙質でもそのよう「差」が存在する 可能性は考えられる。例えば、根面が露出される

図15 根面う蝕にも表層下脱灰が見られる

ことで、フッ化物の沈着や脱灰・再石灰化のサイクルによる象牙質ミネラルの結晶性の向上が考えられ るからである。また酸溶解性に関わる象牙質の構造として、象牙細管の数(密度)とその太さが考えら れる。歯髄に近いほど細管の径は太く、その数も多いことが知られている^{38,39)}。このようなことから、 内層では外層より酸溶解性が高いことが予想される。しかし筆者は、象牙質試料を用いて人工的に表層 下脱灰病変を作成したとする報告を見出すことはできなかったが、エナメル質の場合のように脱灰液の 飽和度や粘性を適度に調整することで、その表層下脱灰の作成は可能と考えられる。

一方 Moron らは, 脱灰液に diphosphonate を配合することで, 表層下脱灰の形成を認めたと報告している⁴⁰。実際のインビボ条件で diphosphonate のような強力なアパタイト吸着物質に曝されることはない であろう。そのような意味で人為的という制約はあるが,象牙質表層の脱灰を抑制することで, 表層下 脱灰を作成することは可能となる。また彼らは,同じ研究にて *in-situ* 条件下で(健全な象牙質試料を口 腔内に装着して,自然に沈着したプラークにて脱灰),健全象牙質から典型的な表層下脱灰の形成を確 認した⁴⁰。また Nyvad らも同様な *in-situ* 条件下で表層下脱灰を確認している⁴¹。しかしこれがどのよ うなメカニズムで形成されたかは,研究者らは言及していない。

仮説2の「脱灰された後の再石灰化沈着」についてはどうか。Smith らは, *in-situ* 研究にて人工的に形成された表層ミネラル密度の低い(恐らくスポンジ状の象牙質脱灰)が再石灰化され, 表層ミネラル密度の高い表層下脱灰を呈する状態になったと報告している⁴²⁾。もちろんフッ化物の使用やプラークコントロールの実施により, より明瞭な表層下脱灰を呈すると推察される。このことから, 仮説2は象牙質病変でも起こる可能性がある。

仮説3の「DCPD 説」についてはどうか。この仮説のポイントは2つある。第1:アパタイトが DCPD に相転化する pH (5.0 付近)以下で脱灰される条件;第2:エナメル質内層で溶け出したミネラ ルイオンが外部に拡散する速度は、十分遅い条件;この2つが満たされることである。象牙質はエナメ ル質と比べてはるかに溶解しやすく、pH5.0 以上で容易に溶けるので表層の形成は困難のように思われ る。しかし先で言及した Moron らはインビトロの研究にて、一定のミネラルイオン濃度と pH の条件下 にて表層下脱灰の形成を確認している⁴⁰。また Kawasaki らもインビトロで表層下脱灰の形成を確認し ている⁴²。「DCPD の形成を必須とする」という条件は、彼らの実験内容からは不明である。

仮説4の仮説「フッ化物の影響によるFA沈着」については,筆者らが行った研究で解説しよう⁴⁴⁾。 牛歯の根部から象牙質試料を作成し,これらに種々のフッ化物を塗布した後,適度な濃度のミネラルイ オンを含む酢酸脱灰液にて脱灰した。用いたフッ化物は,SDF(フッ化ジアミン銀),SDFと同濃度のフ ッ化物を含むフッ化カリウム水溶液, APF, フッ化亜鉛を塩酸で溶かした水溶液およびフッ化亜鉛の水分 散液である。脱灰後, これらの薄切片を作成して TMR 観察を行った。その結果, フッ化物を塗布しなか

った試料では、表層を欠いたう窩性の病変(softened lesion)が認められた。それに対しフッ化物を塗布し た試料では、いずれも典型的な表層下脱灰病変が認め られた(図16)。また筆者は、エナメル質の場合と同 様、ミネラルイオンを含む脱灰液にF(1ppm)を添 加した場合、図16で示したような典型的な表層下脱 灰の形成を認めた(未発表資料)。

これらの結果から,象牙質に高濃度のフッ化物を塗 布することで,あるいは低濃度のFを脱灰液に添加す ることで,表層下脱灰が形成されることが分った。こ

図 16 各種フッ化物塗布後の脱灰において象牙質で 認められた表層下脱灰(TMR 画像)

の場合の形成メカニズムは、第7章で述べたエナメル質の場合と同様であろう。すなわち象牙質に取り 込まれたフッ化物(たぶん大半は CaF₂類似物質)がサブ ppm レベルで溶け出すことで、あるいは添加 して低濃度 Fの作用により、象牙質表層付近では FA に関して脱灰液が過飽和となる。その結果、もとも との象牙質アパタイトが溶解する一方、FA が沈着し、表層下脱灰病変となったと考えられる。

第12章:局所塗布剤の作用メカニズムとフッ化カルシウム様物質

フッ化物の応用には、2つの方法が知られている。第1は歯面局所に作用させる方法(飲み込みを前提 としていない topical application),第2は飲み込みを前提としている全身的適用(sytemic application)で ある。前者には、歯磨剤や洗口剤のような自己にて家庭で使用する方法と、歯科専門家による高濃度フ ッ化物の塗布剤(以下、F塗布剤)による塗布法が含まれる。F塗布剤としては、中性の NaF、酸性の APF(acidulated phosphate fluoride),Fバーニッシュ、フッ化ジアミン銀(silver diammin fluoride: SDF) などが市販されている。これらF塗布剤の作用メカニズムには、フッ化カルシウム様の沈着物の形成と 徐放性という特徴的な現象を伴う。下記にその詳細を解説する。

ちなみに、全身的適用法(フッ化物を含む水道水、錠剤、卓上塩、ミルクなど)についての作用メカニ ズムは、現在でも必ずしも明瞭ではない。その大きな理由の1つは、局所塗布として使用されたフッ化 物の一部は必ず飲み込まれるため、局所作用と純粋に全身的に適用されたフッ化物によるメカニズムを 区別することが困難であるからである¹⁾。同様に全身的に適用されたフッ化物によるメカニズムを り込まれて、局所的適用による作用と区別できない。これまでの仮説は、エナメル質の萌出前(preeruptive effect)と萌出後(post eruptive effect)に区別して、そのメカニズムが推察されている。前者で は、エナメル質形成期において歯胚によってFが取り込まれて、フッ化物含有エナメル質が形成され、こ れが耐酸性を発揮するとの見方である。後者では、飲み込まれたフッ化物が唾液腺を介して唾液に移行 して、これが局所塗布されたフッ化物と同様に作用するとの見方である。全身的適用法の1つとして、 人為的にフッ化物をミルクに添加する方法があり、一定のう蝕予防効果が知られている。しかしその使 用を停止すると、う蝕が増加することも知られている²⁾。このことから、う蝕予防に関して post eruptive effect の方が大きく寄与しているとの見解が主流のようである³⁾。

う蝕予防に使用されるフッ化物には様々な化合物があり、それらの特徴の一部を表1に示した。それらはフッ化ナトリウム(NaF)、フッ化物第1スズ(SnF2)、モノフルオロリン酸ナトリウム(MFP)、

アミン性フッ化物である(R-NH·F)。このうち局所塗布剤に 使用されるフッ化物は, NaF, SnF₂およびフッ化ジアミン銀

(商品名はサホライド): $Ag(NH_3)_2$ である。歯磨剤には、その他に MFP やアミンフッ化物も使用される。これらのフッ化物のうち、 SnF_2 以外は pH 中性を示す。 SnF_2 は加水分解を受けて酸性を示す。これを NaOH などで中性にすると、不溶性の白く濁ったスズの水酸化物や酸化物が沈殿し、可溶性のスズイオン (Sn^{2+}) 濃度が減少する。その結果、他のフッ化物にはない、 Sn^{2+} に固有な酸産生抑制効果やプラーク抑制効果は減少する ⁴⁻⁶)。アミンフッ化物は欧州で使用されているが、日本では使用されていない。う蝕予防効果に関して、NaFと比べてアミンフッ化の方が優れているとするエビデンスは報

表1う蝕予防に用いられるフッ化物

・NaF: Na⁺ + F⁻ pH 中性
・Na₂PO₃F: 2Na⁺ + PO₃F²⁻ pH 中性
フオスファターゼによる加水分解:
PO₃F²⁻ + H₂O \rightarrow H₂PO₄⁻ + F⁻
・SnF₂: Sn²⁺ + 2F⁻ pH 酸性
加水分解:
Sn²⁺ + H₂O \rightarrow Sn(OH)⁻ + H⁺
Sn²⁺ + 2H₂O \rightarrow Sn(OH)₂ + 2H⁺
・アミンフッ化物: R-NH⁺・F⁻ pH 中性
・Ag(NH₃)₂F : Ag(NH₃)₂⁺ + F⁻
pH 弱アルカリ性

告されていない。MPFは主に歯磨剤に使用され、水には容易に溶けるが、イオン化したFは存在しない (ただし原料のNaFが微量含有)。従ってMFPそれ自身にはう蝕予防効果はない。しかし口腔内では、 細菌またはホスト由来のフォスファターゼによって容易に加水分解され、Fが放出される⁷⁻¹⁰。このFは NaF由来のFと同じであるので、NaFと同等のう蝕予防効果を発揮すると報告されている¹¹⁻¹³。

健全エナメル質にF塗布しても、フッ化物を含むアパタイト(以下,FA類似物質)はほとんど形成されない¹⁴⁾。口腔内でこれが優位に形成される条件は、2つの場合である。第1はエナメル質が脱灰され、その後で再石灰化が起きる場合、第2はFの存在下で脱灰と再石灰化が同時進行する場合である(第7章参照)。すなわち脱灰歯質が再石灰化されるときに、FAが形成されやすい。これ以外のプロセスで起こるFA類似物質の形成は、非常に緩慢である。すなわちHAのOHがppmレベルの濃度のFと置換することでFAが形成されるが、実質的にその存在が検出されるまでには、長い時間を必要とする。

健全エナメル質に APF や NaF を塗布すると大部分はフッ化カルシウム様物質(calcium fluoride like material;以下 *CaF/P* と略)が形成される¹⁴⁻¹⁶⁾。ここで「・・・様物質」と表現しているのは、純粋なフッ化物カルシウム(CaF₂)ではなく、リン酸イオンも含まれいるからである。またそれらのイオンの構成比も、塗布後の時間的変化や唾液の影響を受けて一定ではない。この化合物の特性について、以下に解説する。

まず *CaF/P*の形成メカニズムについて述べる。その前に,理解を簡単にするために CaF₂の形成の可否 を考える。筆者は2つの可能性があると考える。第1は、歯質アパタイト表面に存在する唾液由来の Ca²⁺との反応である。純粋な CaF₂の溶解度積(K_{so} = 10^{-10.4} = 3.98×10⁻¹¹)を用いて、以下に CaF₂形成の可 否を推定する。この溶解度積の値から推定されることは、Ca²⁺の活量と下の活量の積(活量積)の値が K_{so}の値以上であれば、CaF₂は形成され得るということである。塗布剤の F濃度を 9000 ppm (4.74×10⁻¹ mol/L)とし、便宜的に唾液に含まれる Ca²⁺濃度を 1×10⁻³ mol/L とし、また Ca²⁺と Fの活量係数を 1.0 と みなす。そうすると、活量積は[1×10³]×[4.74×10⁻¹]² = 2.25×10⁴ となる。この値は、K_{so}よりはるかに大き い。仮にこれらのイオンの活量係数を 1/10~1/100 とした場合でも 2.25×10⁻⁷~2.25×10⁻¹⁰ となり、まだ K_{so} より大きい。このことは、唾液の Ca²⁺と反応して CaF₂は容易に形成・沈着できることを示唆している。 しかしながら、塗布面に存在する唾液の量は微々たるもので、期待される CaF₂の形成も、う蝕予防効果 を期待するには微々たる量であると考えられる。すなわち,塗布剤由来のFが多量に存在していても, 唾液由来の Ca²⁺の量が制限されていれば CaF2の形成量も制限される。

もう1つの形成メカニズムは、歯質アパタイトが唾液を介した間接的あるいは直接的に関与して、CaF2 が形成されるというものである。HA は第2章で解説したように、pH 中性の水に対して一定量の溶解性 を示す。唾液由来のCa²⁺量がCaF2の形成のために消費されて、その濃度が一定濃度以下になると、HA は化学平衡の維持するために溶解する。溶解したCa²⁺は、高濃度で多量に存在するFと反応する。この CaF2の形成とHA の溶解が連鎖して、より多量のCaF2の形成が可能となる(間接的関与)。この場合、 唾液由来のCa²⁺の関与がなくとも、HA との直接的な反応も同時に起きると考えられる。筆者は、直接反 応がメインと考えている。このとき同時にHA からリン酸イオンも溶け出す。このリン酸イオンも巻き 込んでCaF/P が形成される。その意味でアパタイトミネラルが溶け出したといえるが、歯質全体の量と 比べれば微々たる量なので問題はない。

一般に NaF より APF の場合の方が CaF/P は多く形成される¹⁷⁾。その理由は以下のようである。APF は酸性のため、歯質アパタイトは若干溶解されて、Ca²⁺の溶け出し量が多くなり、この Ca²⁺と APF の F と が容易に沈着反応を起こす。しかしう蝕予防効果に関する systematic review の結果では、両者に有意な 違いはないと報告されている¹⁸⁾。う蝕予防効果のメカニズムに関しては、エナメル質表面で形成された CaF/P そのものに耐酸性がなくても良い。しかし CaF/P が、長期にわたって微量濃度の Fの供給源とし て機能することで、脱灰抑制効果と再石灰化促進効果を発揮する¹⁶⁾。下記に CaF/P の特性に関する研究 を紹介する。

通常,このようなF塗布剤を適用する前に歯面清掃を行う。これは主にプラークや食物残渣が歯面へのフッ化物の沈着を妨害するので、その除去のために行う。それではペリクルの影響はどであろうか。 Cruz らは以下のような方法で、健全エナメル質へのフッ化物の取り込みに関してペリクルの影響を検討した。彼らは、ペリクルで皮膜形成を行ったエナメル質とペリクルを形成させないエナメル質に 2% NaFを塗布し、その後、1.0 M KOHの溶液に浸漬して、この溶液に溶け出したF濃度を測定した。その結果、ペリクルの有無に関わらず、溶け出したF濃度に差はなかった¹⁵⁾。つまり日常の臨床現場では、強いてペリクル除去をする必要はないことを示している。

このとき用いた KOH の役割について述べる。1.0 M KOH には高濃度の OH イオンが存在する。する と Ca²⁺は OH と結合して水溶性の Ca(OH)₂を形成し、Ca²⁺濃度は低下する。化学平衡を維持するため、 *CaF/P* に含まれる「Ca²⁺と結合していた Fとリン酸イオン」は解離して、KOH 液に溶け出る。また吸着 した Fも溶け出るので、KOH で抽出できるフッ化物は、ほとんどは *CaF/P* と吸着 Fと考えられる。しか しながら FA の場合、FA の結晶格子の成分として存在している Ca²⁺は、非常に強い結合力で結びついて いるので、高濃度の OH でも Ca(OH)₂を形成することはない。従ってエナメル質に取り込まれた Fが *CaF/P* として存在しているか FA として存在しているか、ある程度区別できる¹⁹⁾。また彼らは、以下のよ うな方法で *CaF/P* の溶解性についても検討した¹⁹⁾。健全エナメル質に F バーニッシュ(DuraphatTM, 5% NaF)または 2% NaF を塗布後、24 時間または 48 時間蒸留水に浸漬し、KOH を用いて取り込まれた F を 測定した。その結果、塗布直後(1.82 µg/cm²)と比べて、24 時間後で 1.02 µg/cm², 48 時間後で 0.80µg/cm² となり、意外にも短時間で F は溶け出してしまうことが分かった。ただしここでは、塗布後のエナメル 質試料を 100 mL もの大量の蒸留水に浸漬・撹拌した後に残ったフッ化物量である。実際の口腔内では、 もっと緩やかに減少すると思われる。一方 2% NaF の場合、DuraphatTM と比べて塗布直後では約 7.4 倍 (13.39 µg/cm²) も高い濃度であったが, 蒸留水への浸漬後に残ったフッ化物量のデータの記載はなかった。DuraphatTMにて, エナメル質に取り込まれたフッ化物量がかなり少なかった理由として, DuraphatTMでは NaF はアルコール溶媒に分散しているだけで, 溶けていない(Fとしてイオン化していない)。そのためエナメル質の Ca²⁺との反応性がかなり低下していると考えられる。同時に彼らは, 蒸留水に浸漬後に酸で塗布面をエッチングし, KOH に溶けないフッ化物(たぶん FA 様の物質)の量を測定した。その結果, F バーニッシュおよび 2% NaF の場合でも, その量(µg/cm²)は KOH で抽出されたフッ化物量の1/10 程度あるいはそれ以下の量であった。なおこの量は, 塗布しないエナメル質に存在するフッ化物とほぼ同レベルであった。すなわち FA の形成は無視できる量であることを示唆している。ただし F バーニッシュの使用のメリットは, バーニッシュの素材によって沈着したフッ化物が保護され, 長期間の F の徐放が期待される。また余剰なフッ化物の飲み込みも抑制できる。

さて歯面に沈着した *CaF/P* の滞留性および Fの徐放性は,以上のインビトロ研究成果からは,やや短 いのではないかと推察される。例えば Grobler らは,塗布後,Fは数週間にわたって唾液やプラークに供 給されると報告している²⁰⁾。通常,F塗布剤は1年に数回使用される。そうだとすると,数週間のF徐放 期間では,十分なう蝕予防効果が発揮されないのではないかと

*CaF/P*からのF徐放性に関して, Saxegaad らはヒトの実際の 唾液を用いて*in-vitro*にて評価した²¹⁾。唾液には*CaF/P*と共通 のイオンである Ca²⁺とリン酸イオンが含まれているので, *CaF/P*の溶解性を低下させることが予想された。そこでまず, これらのイオンの単独の影響を調べた。すなわち 1.0 mM CaCl₂あるいは 2.0 mM リン酸ナトリウムの試験液(pH6.8)に 試薬由来のCaF₂を 12 分のあいだ浸漬し,そこに溶け出した F を測定した。また同様な測定を,ヒト唾液を用いて検討した。 次いで残った CaF₂を再び新しい試験液あるいはヒト唾液に浸 漬し,同様に Fを測定した。この操作を合計 6 回繰り返した。 その結果を図1に示した。主な結果は以下のようであった。 ①水の場合でのCaF₂の溶解性と比べて, CaCl₂試験液に浸漬し

思われる。

中における CaF2の溶解性の比較

た場合、Ca²⁺は溶解性を約半分に抑制し、その影響は6回まで継続した。②リン酸イオンの試験液の場合、 繰り返し操作が行われるごとに、溶解性は著しく減少した。そのメカニズムとして彼らは、リン酸イオ ンが CaF/P の表面に吸着したことによるとしている。③唾液の場合は、リン酸イオンの場合と同様に、 顕著な抑制作用が認められた。この場合は、リン酸イオンの影響と合わせて、唾液タンパク質の吸着も 関与していると推察している²²⁾。また彼らはリン酸イオンで事前に試薬の CaF2を1時間処置し、蒸留水 中での溶解性、およびその後に残ったフッ化物について KOH 溶液中での CaF2の溶解性を検討した。そ の結果、リン酸イオンで事前処置をしていない場合、蒸留水での CaF2の溶解度は 69.7 µg、KOH による抽 出度は 199.9 µg であった。これに対しリン酸イオンで前処置した場合、前者では 4.8 µg、後者では、132.6 µg であった。この結果は、上で述べた結果(リン酸イオンによって CaF2の溶解性は著しく抑制され る)に加えて、KOH 溶液でもかなり抑制されることが示された。これは、*CaF/P*の一部が FA に近い結晶 に変化したからと筆者は推察している。これらの結果は、*CaF/P*は実際の口腔ではかなり長期にわたって存在し続けることを示唆している。

唾液やプラークには、微量ではあるがピロリン酸イオン (P₂O₇⁴) が存在する²³⁾。Lagerlof らは、CaF₂の溶解性に及ぼすピロリン酸イオンの影響 (0.1~10 mM) を検討した。その結果、リン酸イオンと比べて、CaF₂の溶解を抑制する作用は小さいながらも、明らかにその作用を有することが示された²⁴⁾。このように、唾液に含まれるミネラルイオンや唾液タンパク質、さらにはピロリン酸イオンのため、口腔内での*CaF/P*の徐放性は上述の Grobler らの報告で示された蒸留水中よりも遥かに長いと推察される。

ここまでは、高濃度 Fの塗布剤による健全エナメル質表面での CaF/P の沈着についての検討であった。それでは、F 塗布剤より低濃度の F 歯磨剤では、CaF/P の沈着は起こるのであろうか。この疑問は、F 歯磨剤の作用メカニズムを考える場合、非常に重要である。Arends らは、*in-situ* の条件で人工的に脱灰したエナメル質試料(サンプル)で、CaF/P の沈着は起きるかどうか検討した²⁵⁾。用いた歯磨剤は 6 種類である(濃度は 1,000 または 1,500 ppm の F:フッ化物は 3 種類: NaF, MFP, SnF₂)。サンプルを矯正装置に固定し、これを被験者の口腔に装着し、1 日 2 回の歯磨きを被験者に依頼した。2 週間の F 歯磨剤の使用後、KOH 溶液を用いて CaF/P の沈着量を測定した。その結果、いずれの F 歯磨剤でも KOH 溶液に

一定量の *CaF/P* 由来のフッ化物と Ca²⁺およびリン酸イオンを検出した。さらにサンプルの表面を SEM で観察した結果, *CaF/P* に特有な形状(球状の沈着物)を確認した

(図2の右)。KOH 処理後では、この球状の沈着物は消失していた(図2の左)。確認のため、Raman分光分析器にてサンプル表面の球状の沈着物を分析した結果、CaF/Pが同定された。しかし健全エナメル質では

図 2 F 歯磨剤を *in-situ* にて 2 週間したときのエナメル質小柱に沈着した CaF/P (球状). 右: KOH 処置前 左: KOH 処置後に球状物が消失し, エナメル質単結晶が見える.

*CaF/P*は、ほとんど検出されなかった。これは2週間のF歯磨剤の使用によっては、健全エナメル質ではFAはほとんど形成されないことを示唆している。その理由として、筆者は2つの可能性を考えた。 ①単位領域において、脱灰されたエナメル質の表面と比べて、健全エナメル質の表面の面積はが小さいためFとの反応効率が低いこと、あるいは②脱灰されたエナメル質表面は、アパタイト以外のリン酸カルシウム(例えば DCPD など)で覆われ、これらのリン酸カルシウムはアパタイトと比べてFとの反応性が高いこと。

また彼らは、エナメル質試料に取り込まれた全フッ化物量に対する *CaF/P* 由来のフッ化物量を測定した。その結果、約 40%が *CaF/P* 由来であり、残りの約 60%は F 含有のアパタイト(fluoridated apatite)であると推察した。この F 含有のアパタイトは、試料として用いた脱灰エナメル質が再石灰化されるとき、*CaF/P* 由来の Fが取り込まれて形成されたと推察される。

第13章:フッ化物による初期う蝕の再石灰化促進メカニズム

まず再石灰化という現象を化学的観点から考えてみる。エナメル質や象牙質のアパタイト結晶が酸に よって溶解され,結晶のサイズが小さくなる。その変化が臨床的には,エナメル質の白斑や物理的強度 の低下となって現れる。さらにその結晶が脱灰によって消失した場合,それはう窩として認知される。 象牙質では、白斑とはならないが脱灰によりその部位は柔らかくなる(軟化)。再石灰化とは、その小 さくなった結晶がミネラルイオン(Ca²⁺、リン酸イオン)を取り込んで大きくなることである(図1)。

このとき Fの添加や弱アルカリ性化(これによっ て, OHの供給と PO4³濃度の上昇が同時進行)す ることで,再石灰化の進行が促進される。アパタ イト(あるいは HA)の結晶が成長する化学変化 を簡単な装置で再現することができる。図2にそ の装置の概要を示した(ここでは, F添加した場 合を図示)。ビーカーに,脱灰で小さくなった結晶 の代わりに HAの微結晶を入れ,唾液の代わりに ミネラルイオンを含み pH を中性付近に調製した 人工唾液を入れる。

この人工唾液は、HA に関して過飽和 の状態にある溶液である。一般に pH が 中性付近では、唾液やプラーク液では HA に関して過飽和である。これらの液 体にはミネラルイオンが過剰に溶けてお り、その濃度は HA を水に溶解したとき の濃度より高い。pH7 の水に溶ける HA の最大濃度は、Ca²⁺として約 0.1 mM、リ ン酸イオンとして約 0.06 mM である。ヒ トの無刺激唾液では、Ca²⁺として平均約 1 mM、リン酸イオンとして平均約 3 mM

図1 アパタイト結晶の再成長(再石灰化)

濃度である。従って Ca²⁺では約 10 倍, リン酸イオンでは約 50 倍となる。一方, プラーク液では Ca²⁺で は約 57 倍, リン酸イオンでは約 265 倍となる¹⁾。すなわちこれらの液体では, HA に関して過飽和な状態 となっており, 潜在的には HA と形成・沈着が可能な状態にある。

この過飽和の人工唾液に pH 電極を差し込んで, pH 変化をモニターする。すると pH は低下し始める。pH 電極の代わり Ca²⁺電極を用いると, Ca²⁺濃度の低下が起きる。あるいは人工唾液から一定量の溶液を採取して, 溶液に溶けているリン酸イオン定量すると, やはりリン酸イオンの低下が認められる。 このようなことから, ビーカーの中では, 式 1) に示すような化学反応が起きていることが理解される。 すなわち HA の微結晶が, 溶液に溶けているミネラルイオンを取り込んで成長する。同時に, 水分子

1) $5Ca^{2+} + 3HPO_4^{2-} + H_2O \rightarrow (Ca)_5(OH)(PO_4)_3 + 4H^+$

(H₂O)が分解されて OH と H⁺とが生成され, OH は HA に取り込まれ, H⁺は溶液に残る。また HPO₄² 由 来の H⁺も溶液に残る。その結果, pH の低下が起きる。これは, HA という「塩基性(アルカリ性)物質 の形成」と「溶液の酸性化」が相殺して反応系全体では, H⁺と OH の量は反応前後で不変であることを 意味している。この化学反応は反応開始の時点では, 非常に速く進行するが, 時間とともに遅くなる。 それは, 原料であるミネラルイオン濃度の低下と pH 低下による。この 2 つの要因の変化により, この溶 液の過飽和度が低下するからである。もしこの反応にミネラルイオンを追加すれば, 反応速度は回復す る。また pH を上げても回復する。これは前述したように, OH の供給と同時に PO4³ 濃度の上昇が同時進 行するからである。従って初期う蝕の再石灰化はフッ化物が存在していなくても, ミネラルイオン濃度 が一定以上高い場合や pH が弱アルカリ性であれば十分進行する。

次にFをこの反応系に添加した場合を考えてみる。この場合も HA の微結晶を使用する。Fを添加しない場合は、図 2 の黒の曲線で描いたような、なだらかな時間変化で HA の微結晶の成長が起きる。ただしFを添加した場合は、HA の表面に FA 結晶が沈着して、全体として結晶は大きくなる。本来、HA とFA では結晶としては異なるが、両者で類似の結晶構造を有していることから、このような反応が起きる。これをエピタキシー(epitaxy)と呼ぶ。epitaxy とはギリシア語に由来する結晶学用語で、「規則的に重なる」に由来する。このときもミネラルイオン濃度の低下と同時に、pH の低下が起きる。Fを添加しない場合と比べて、pH の低下や Ca²⁺の濃度の低下は、非常に顕著である(図 2 の赤の曲線)。このときの pH の低下は、下記の式 2 で示したように、H₂O の分解によるものではなく、結果的には 3HPO4²⁻の

2)
$$5Ca^{2+} + 3HPO_4^{2-} + F^- \rightarrow (Ca)_5(F)(PO_4)_3 + 3H^+$$

H+に由来する。

フッ化物が再石灰化の進行に関して,非常に優れた効果を発揮する理由(メカニズム)を以下に解説 する。最も簡単な理由として,HAの構成イオンの1つである OH'と FA の場合のFに注目して,石灰化 液(人工唾液,唾液,プラーク液)における OH'と Fの存在割合を比較する。

HAの形成量は、石灰化液に含まれるミネラルイオン濃度とpHで決まる、すなわち(Ca)⁵×(OH)×(PO₄)³の式で示される量に比例する。カッコは同イオンの活量を示し、肩の小文字はべき乗の数値である。この式からミネラルイオン濃度が高いほど、またOH濃度が高いほど(つまり高いpH)HAの形成は促進される。

フッ化物による再石灰化促進効果のメカニズムは、上述の HA の形成の場合と同じである。通常、再 石灰化が起きる pH は中性付近である場合が多いので、ここでは pH7.0 とする。pH7.0 では OH 濃度は

10⁻⁷である。この値は,水のイオン積(Kw = (H⁺)×(OH⁻) = 10⁻¹⁴)から求まる。pH7.0の場合,Fとの割合(F⁻÷OH⁻)は, F濃度に応じて表1に示した値となる。0.1 ppmでも53倍も の高い濃度のFが存在することになる。

この簡単な計算から、Fが唾液やプラーク液に存在すると、

HA より FA が優先的に形成されることが理解され る。実際には FA の形成ポテンシャルは,第5章で 解説した活量積 $I_{p(FA)} = (Ca)^5 \times (F) \times (PO_4)^3$ の式で示さ れる量に比例する。この式からミネラルイオンと F濃度が高いほど,FA の形成は促進されることが 分かる。HA の場合と同様,pH が高いほど PO₄³濃 度が高まるので,FA の形成にも有利である。図 3 に,HA と比べて FA がより有利に形成される構図 を示した。pH7 の場合を例に解説する。pH7 では OH濃度は 10⁻⁷ M である。フッ化物を使用して唾 液やプラーク液に 0.1 ppm 残ったとする。その場

表 1 pH7.0 での F と	OHの濃度の比較
------------------	----------

F (ppm)	モル濃度 (M)	$F^{-} \div OH^{-}$
0.1	5.3×10 ⁻⁶	53 倍
1.0	5.3×10 ⁻⁵	530 倍
10.0	5.3×10 ⁻⁴	5,300 倍

図 3 HA と FA の形成能の比較: pH7 で 1 ppm F⁻ が存在している場合

合の FA と HA の形成量の違いは, [(Ca)⁵×(F)×(PO4)³]÷[(Ca)⁵×(OH)×(PO4)³]の値(R とする)を知ること で推定できる。今, Ca²⁺と PO4³濃度は同じなので, R の値は[(F)]÷[(OH)]となる。0.1 ppm Fの濃度は 5.3×10⁻⁶ M であるので, R の値は表 1 で示したように 53 ([5.3×10⁻⁶]÷[10⁻⁷])となる。すなわち 53 倍も FA が形成されやすい。もし 1 ppm の Fが残れば 530 倍となる。しかし pH が 7.0 以上では, Fの効果は小さ くなる。例えば 0.1 ppm F の場合 pH8 では, R は 5.3 倍となり, pH9 では 0.53 倍となって F そのもの効果 は再石灰化に寄与しなくなる。

さて次に、実際の表層下脱灰病変での再石灰化現象について考えてみる。先にエナメル質で再石灰化 が期待できるのは、「表層下脱灰病変」の初期う蝕(第6章の図3,4)だけであると述べた。臨床的に は、白斑あるいはホワイト・スポットと呼ばれる病変である。再石灰化とは、脱灰によって小さくなった 病変内のエナメル質結晶が再び大きくなる(再成長する)ことを先に解説した。従って病変がエナメル 質内に限定されていても、実質欠損のある病変では再石灰化は起きない。その理由(メカニズム)は第 14章で解説する。

Dijkman らは, F 歯磨剤が本当に再石灰化を促進するかどうか, ヒトロ腔での *in-situ* 実験にて検討した²⁾。人工的に作製したエナメル質表層下脱灰(初期う蝕)の試料を被験者数(11-13人)人に装着した。 被験者は3回にわたって異なった指示を受けた(ラテン方格方式)。①試料表面の歯磨きをしない(プ

ラーク除去なし)。②F無配合の歯磨剤を使用して 試料表面を歯磨きする(プラーク除去あり)。③F 歯磨剤を使用して試料表面を歯磨きする(プラー ク除去とFの作用あり)。それぞれ3ヶ月後,試料 を取り出し,脱灰の深さをTMR法にて測定し比較 した。その結果,①試料表面の歯磨きをしない場 合,脱灰の深さは約30%増大した(悪化)。②Fな し歯磨剤を使用した場合,不変であった。③F 歯磨 剤を使用した場合,脱灰深さは約35%減少し,再石 灰化の促進が確認された(図4)。これらの結果に

ついて①と②の比較から,Fなし歯磨剤でブラッシングした場合,その再石灰化効果は約30%とも解釈で きる。そして①と②と③の比較から,F歯磨剤の場合はブラッシング効果(約30%)とフッ化物の効果 (約35%)が合わさった効果(約65%)とも解釈できる。

これに関連して筆者らは、インビトロにてエナメル質初期う蝕の再石灰化の進行及ぼす F濃度の影響 を検討した³⁾。まずヒトエナメル質の薄切片を作製し、エナメル質表面を除いた全ての歯面を耐水性の 皮膜で覆い、脱灰液に浸漬して表層下脱灰病変(サンプル)を作製した。次いでサンプルの脱灰程度 (ΔZ:ミネラル損失量、脱灰深さ、表層での最大ミネラル密度など)を TMR 法で評価した。次いでミ ネラル損失量に関して同程度になるようにサンプルを4 群に分け、4 種類の F濃度の異なる再石灰化液 (無添加, 0.1, 0.5, 1.0 ppm)に浸漬した。2 週間後、再石灰化させたサンプルを再び TMR 法にて脱灰程 度を評価し、再石灰化前後での再石灰化率(R)を算出した。このように、同一サンプルを経時的に評価

する実験法を single thin section 法という。この方法には,個々のサンプルにおいて脱灰・再石灰化に伴う変化量を計測できるメリットがある。この実験での再石灰化率(R)とは,再石灰化前のミネラル損

失量を ΔZ_0 (vol%· μ m),再石灰化後のミネラル 損失量を ΔZ_1 (vol%· μ m) としたとき,[($\Delta Z_0 - \Delta Z_1$) ÷ ΔZ_0]×100(%)で表される値である。

その結果,F無添加の群において平均値で最も 高い再石灰化率を示し,次いでF濃度に応じて再 石灰化率が高くなった(図5)。なぜF無添加群 が最大の再石灰化率を示したか。筆者らは,再石 灰化前のサンプルの表層での最大ミネラル密度 との関連性を検討した。その結果,F無添加群で は,表層でのミネラル密度が最も低く(46%), 他の3群とは有意に低かった(62%)。このこと から,F無添加群では再石灰化液に存在するミネ ラルイオンが表層の隙間(porosity)を介して浸 透しやすかったのではないかと推察された。表

層のミネラル密度が同じであった残り3群では,再石灰化率は,F濃度依存性であった。ただし,0.5 ppm 群と1.0 ppm 群とのあいだで有意差は認められなかった。その理由として,1.0 ppm 群ではFA に関して, より高い飽和度となり,表層でのFA の沈着が高度に亢進して,病変内部に繋がる隙間の径が小さくな り,その結果,再石灰化液に存在するミネラルイオンやFが病変内部に浸透しにくくなったことによる と考えられる。

このように、図5に示した結果には、説明を要する疑問が幾つか存在する。その疑問に関する解説は 第14章 (唾液タンパク質:リン・タンパク質と再石灰化現象)にて詳しく論じる。図5の結果に関連し て Strang らは、筆者らの結果と同様な結果を *in-situ* 試験にて得た⁴。彼らは、脱灰程度の異なったエナ メル質脱灰サンプル(薄切片試料)を作製し、再石灰化前の脱灰程度(baseline 値, ΔZ: vol%·μm)を

TMR 法で評価した。次いでこのサンプルを被験者の口腔 に装着して,毎日 1,000 ppm F (NaF)の歯磨剤を使用さ せた。毎週,試料を口腔内から取り出し,TMR 法にて再 石灰化の進捗度を評価した(single thin section 法)。次 いで,再石灰化前の baseline 値(表層でのミネラル密度: vol%)と再石灰化率との関連性を検討した(図 6)。こ こでの再石灰化率とは、再石灰化前のミネラル損失量

 $(\Delta Z_{0}= vol\% \cdot \mu m)$ に対する再石灰化後のミネラル損失量 (ΔZ_{1}) の減少率 $([\Delta Z_{0} - \Delta Z_{1}] \div \Delta Z_{0}: \%)$ である。その 結果, baseline 値のミネラル密度が低いほど,高い再石灰 化率が認められた $(\mathbf{R} = -0.6)$ 。表層のミネラル密度が $60 \sim 70 vol\%$ では,ほとんど再石灰化が起きないことが分 った。このことは、白斑は再石灰化の過程の後半で、そ れ以上に再石灰化は進行せず、白斑のままの状態が長く

図6エナメル質初期う蝕の表層のミネラル 密度と再石灰化後のミネラル密度の関係

続くこともあり得ることを示唆している。またフッ化物を用いて再石灰化を促そうとしても,その効果 が発揮されないことも念頭に入れておかなければならない。

さらにはこの結果は以下のような示唆を含む。フッ化物製剤の再石灰化効果を *in-situ* 試験で評価する 場合,サンプルの baseline の値を群間(試験群と比較群)で同一レベルに合わせておかないと,誤った結 果(フッ化物には,濃度により再石灰化を抑制する作用がある)をもたらす可能性がある。このことは, 臨床試験でも当てはまると考えられる。

Lipperd は、再石灰化前の脱灰程度と再石灰化後のエ ナメル質表層の硬さとの関係を *in-vitro* での pH サイク リング法にて検討した⁵⁾。このとき脱灰程度は脱灰時 間(8,16,24,36 時間)として設定し、再石灰化の促進 条件としてフッ化物処置濃度(F濃度:0,83,367 ppm)とした。この濃度は、250 ppmの洗口剤または 1150 ppmの歯磨剤を3倍に水希釈した濃度に相当す る。その結果の1部を図7に示す。この図では、縦軸 に再石灰化処置に伴った硬さの増減(ΔVHN)を、横 軸にはエナメル質試料の脱灰時間を示す。また各脱灰 時間に関して、3つの棒はF濃度を示す(白棒:0 ppm、 グレー棒:83 ppm、黒棒:367 ppm)。その結果、①Fを 含まない場合は、硬さが減少またはほとんど変化しな かった。②いずれの脱灰時間においても、F濃度が高い ほど、より多く硬さが増大した。③脱灰時間が長いほ

ど、硬さの増加量は、いずれのF濃度でも少なくなった。この図でのアルファベットは、群間の有意差は を示している。すなわち、フッ化物濃度が同じ群内での比較において、同じアルファベット同士は有意 差がないこと、異なったアルファベット同士では有意差があることを示している。この結果は、非常に 重要なことを示唆している。すなわち、脱灰程度が進行すればするほど、フッ化物による再石灰化促進 効果は小さくなることを示している。つまり初期う蝕は、より早期にフッ化物で介入した法が、より効 果的な結果が得られることを示唆している。ただし彼は、ここでの初期う蝕の脱灰深さは 50 µm 以下で あるので、それより深い脱灰深さの初期う蝕でも同様な結果が観察されるかどうか、断言はできないと している。

これまで述べてきたように、一般に再石灰化を期待するにはフッ化物の使用が推奨される。しかし図 4 で示唆されるように、プラーク除去単独でも再石灰化の進行に一定の影響力があ るのではないかと考えられる。そこで筆者らは、ブラッシングによるプラーク除去 が再石灰化の進行に及ぼす影響をインビトロで検討した⁹。ヒトエナメル質試料に 表層下脱灰病変(図 8)を形成し、その脱灰程度をQLF装置(quantitative lightinduced fluorescence)⁷⁻¹⁰⁾を用いて非破壊にて定量した。次いでこれらの脱灰試料を、 脱灰程度の平均値が同じなるように、QLF測定値(ΔF)にて2群に分けた。また再 石灰化前に、一部の試料を用いて脱灰程度(ΔZ:vol%·µm)をTMR法にて評価し た。その後、2群のうち一方の群には脱灰歯面上に、*S. mutans* 10449 株の人工プラークを形成させ(試験 群:n=13),もう一方にはこれを形成させない対照群(n=13) とした。そしてこれら2群の試料を、フッ化物を含まない再石 灰化液に7日間浸漬し、再石灰化を起こさせた。再石灰化後、 再びTMR法にて、再石灰化の進捗度を評価した。その結果、 試験群(人工プラークあり: ΔZ =1499 vol%·µm)と比べて対照 群(人工プラークなし: ΔZ =542 vol%·µm)において ΔZ の減 少率(%)は、約 67%小さかった(図9)。すなわちプラーク は、再石灰化の進行を抑制することが示唆された。

また QLF 法で評価した脱灰深さの減少率%と脱灰面積の減 少率%(いずれも再石灰化の指標)は、いずれもプラークなし 群で有意に高かった(図 10)。

さらに QLF 画像にて再石灰化の前後の試料面を観察 した結果, プラークなしの試料において, その画像の暗 い部分の明るさが回復し, 面積も小さくなったことが分 る(図11)。これらのことからも, プラークは再石灰化 の進行を妨害していることが示唆された。この結果は, 上述した Dijkman らの *in-situ* 結果(図1)と一致してい る。すなわち, 日々の適切なブラッシング(プラーク除 去)は,う蝕の進行の抑制あるいは再石灰化の促進に有 効ではないかと推察される。

プラークがなぜ再石灰化を妨害しているか、そのメカ ークの ニズムは十分には明らかではない。このことに関連して Damen らは、細菌が産生するリポタイコ酸(lipoteichoic acid)が HA の結晶成長を抑制すること¹¹)、さらにはこれを含む再石灰化 液にて表層下脱灰病変を再石灰化させた場合、これを含まない 場合と比べて再石灰化が抑制されることを報告している¹²)。リ ポタイコ酸は、特にグラム陽性菌によってプラーク内で多く産 生される。その分子の特徴の1つとして、分子内にリン酸エス テルが存在することである。これは、次の章(第14章)で解説 するリン・タンパク質と分子構造が似ている。彼らは、リポタイ コ酸が HA に強く吸着することも報告している^{13,14}。一般に、こ のようなリン酸エステルを有する高分子あるいはタンパク質は、 HA の Ca サイトへの吸着力が非常に強いため、HA の結晶成長を 強く抑制する。

vol%∙µm

図 9 エナメル質初期う蝕の再石灰化に及 ぼすプラークの影響(ミネラル量の回復)

図 10 エナメル質初期う蝕の再石灰化に及ぼすプラ ークの影響(左:脱灰の深さ、右:脱灰面積の減少率)

図11 再石灰化に及ぼす人工プラークの影響

第12章で解説したように、フッ化物による再石灰化促進効果は唾液やプラーク液にFが溶存している ことを前提している。歯質に取込まれたFや高濃度のフッ化物塗布剤(例えば APF やサホライド)によ って歯面(健全および脱灰歯面)に沈着したフッ化カルシウム様物質(*CaF/P*) 由来のFは、最終的に は、口腔内で循環して唾液やプラーク液に移行する。これらのFが再石灰化過程でFAの形成に関与す ることになる。F 歯磨剤やF洗口剤にて歯質に取込まれたFは、数時間内でほとんどなくなるので、毎日 補給することが初期う蝕の再石灰化には必要となる。

このような唾液やプラーク液に存在する Fが, 脱灰抑制や再石灰化に有効であるとする考え方は, う 蝕治療後の充填物や予防シーラントにフッ化物を配合させた製品に生かされている。これらの歯科材料 は, できるだけ長期間にわたって Fが徐放されるよう設計され, う蝕の初発および二次う蝕の予防が期 待されている。筆者らが行ったインビトロ実験でも, 1 ppm の Fを含む人工唾液にエナメル質表層下脱灰 を 4 週間浸漬すると十分な再石灰化が起きることを認めている(第 14 章にて紹介)。

この章では、主にエナメル質初期う蝕(表層下脱灰病変)の再石灰化メカニズムに関して解説したが、 象牙質う蝕でも再石灰化現象は起きるのであろうか。起きるとすれば、エナメル質の場合のメカニズム と違いはあるのか。エナメル質の場合は、表層下脱灰病変でなければ再石灰化は起きない、換言すれば、 う窩を呈する病変は再石灰化しない、と強調してきた。その理由やメカニズムについては、次の章(第 14章)で解説する。

筆者らは、再石灰化前の脱灰程度および再石灰 化液に含まれる F濃度が再石灰化の進行に及ぼす 影響をインビトロにて検討した¹⁵⁾。牛歯の根部象 牙質を異なった期間(1,3,7 日間: pH4.6 の乳酸 緩衝液)にて脱灰し、これを実験試料とし、再石灰 化前の脱灰程度を TMR 法にて解析した。このと きの脱灰病変は、表層のないう 高状であったが、表 層付近では一定度のミネラル密度を呈していた。 その後、異なる F濃度(0,0.1,0.5 ppm)を含む再 石灰化液にて 2 週間再石灰化させ、TMR 法にて再 度、脱灰程度を解析した。再石灰化後の脱灰病変

は、明瞭な表層を伴う表層下脱灰であった。そして再石灰化前の脱灰程度(ΔZ_0)に対する再石灰化後の 脱灰程度(ΔZ_1)の割合($[\Delta Z_0 - \Delta Z_1] \div \Delta Z_0$)すなわち再石灰化率%を算出した(図 12)。

その結果,脱灰期間が長いほど再石灰化率は低下した。これは,長期間の脱灰により再石灰化に必要 なアパタイト結晶核の数および核1つ当たりの表面積が減少し,再石灰化の効率が低下したことによる と推察される。また1日間の脱灰の場合を除いて,F濃度が高いほど再石灰化率は高い傾向であった。1 日間の脱灰の場合,Fの影響は見られなかったが,これは脱灰期間が短い場合,再石灰化に必要なアパタ イト結晶核が十分な量だけ存在し,再石灰化の効率が高かったからと考えられる。すなわち軽度の脱灰 では,Fの影響を受けることなく,すみやかに再石灰化が進行することが示唆される。さらにFによる再 石灰化効果は,3日間の脱灰試料にて明瞭な濃度依存性が認められたことから,Fによる再石灰化作用は, 脱灰程度にかなり依存することが示唆された。

う窩状のエナメル質病変の場合では再石灰化は起きないが,象牙質病変の場合,明瞭な再石灰化が進行した理由は,以下のように推察される。上述したように脱灰後の象牙質表層付近には,完全には溶け切らなかったミネラル分が残り,それが核となって再石灰化が進行したと考えられる。すなわちエナメル質初期う蝕と異なり,象牙質では表層の存在は必須ではないと考えられる。

この表層でのミネラル密度と再石灰化に関連して,筆者らは3つの異なった脱灰条件にて作製した脱 灰象牙質が再石灰化するかどうか検討した¹⁶。①強い脱灰条件(100 mM, pH4.0 の酢酸);これは表層 でのミネラル密度が小さい場合;②弱い脱灰条件(100 mM, pH5.0 の酢酸),これは表層でのミネラル密 度が高い場合,③EDTAによる完全脱灰の条件(50 mM, pH7.0);これは表層のミネラルがほぼ完全に消 失した場合。なお③の場合,脱灰過程にて酸性 pH と温度(体温)によるコラーゲンの変性が起きない よう,中性 pH および 4℃の定温で脱灰した。いずれも2週間の脱灰とし、その後、1 ppm Fを含む再石灰 化液(FA に関して高い過飽和飽和な状態)に浸漬した。4週間の再石灰化後、TMR にて再石灰化の進行 状況を観察した。その結果、①と②では、再石灰化前には表層の存在は観察されなかったが、再石灰化後

には明瞭な再石灰化表層が確認された。また全体の再石 灰化の進行程度は,pHが高い(pH5.0)ほど明瞭に観察さ れた。しかし③では,表層の形成や脱灰内部での石灰化 の進展など,全く変化は観察されなかった(図13)。こ のような結果は,以下のように説明できる。①と②にお いて脱灰後,TMR 画像で一見,表層が見られない病変であ っても,僅かながらコラーゲン層にアパタイトの微結晶 が残存し,それが核となって結晶成長し,表層を形成した と推察される。それはあたかも,エナメル質の表層下脱 灰病変にてアパタイト結晶が残存し,それが核となって 結晶が増大する現象と同じであると考えられる。それに 対し,③ではアパタイト結晶は完全に溶解して微結晶は 全く残らず,その結果,結晶成長が全く起きなかったと推

察される(これはエナメル質う蝕でのう窩に相当すると

図 13 脱灰象牙質の再石灰化に及ぼす脱灰程度 の影響: TMR 画像 破線は脱灰前の表面

考えられる)。このことは、たとえコラーゲンの健全性が維持されていても、それは決して再石灰化の 契機にはならないことを示唆している。また筆者は、この結果はコラーゲンの健全性は必ずしも再石灰 化の可否に関与しないと考えている。

ここで初期の根面う蝕の再石灰化の可能性について、臨床試験の結果を紹介する。プローブによる象 牙質う蝕の診断基準によるとプローブの進入程度に応じて、硬化病巣(hard lesion)、なめし革様病巣 (leathery) およびソフト病巣(soft lesion)に分類される¹⁷⁾。ICDAS では、実質2つに分類される¹⁸⁾。 Code 1; 患部は着色によって明確に区別できるが、う窩状(深さ0.5 mm 以下)ではない。 Code 2; 患部 は着色によって明確に区別できるが、う窩状(深さ0.5 mm 以下)ではない。 Code 2; 患部 は着色によって明確に区別できるが、う窩状(深さ0.5 mm 以上)を呈する。いずれの診断基準も、エナ メル質初期う蝕のような、表層の存在の有無に触れていない。Baysan らは、NaF 配合歯磨剤(F として 1100 および 5000 ppm)による primary root caries(初期の根面う蝕: leathery lesions に分類)の再石灰化 促進効果について、プローブ硬さに準拠した診断基準と ECM(Electrical Caries Meter: 電気抵抗値による 脱灰程度の評価)を用いて、F 濃度の違いを検討した。その結果、両歯磨剤にて leathery lesion から hard lesion への改善効果が認められた。また電気抵抗値の上昇も両群で認められた。この上昇は、再石灰化に よって空隙が小さくなり電気が伝わりにくくなったことによる。これらの改善(変化)は、5000 ppm に おいて高い効果が認められた¹⁹⁾。Hu らも、フッ化物を含まない歯磨剤を対照に、同様な診断基準を用い てモノフルオロリン酸ナトリウム配合(1450 ppm F)の再石灰化促進効果(leathery から hard lesion、お よび soft から leathery lesion)を確認した^{20,21)}。この臨床試験では、フッ化物を含まない歯磨剤の使用群 が採用されているが、その群でも一定程度の再石灰化の進行が観察されたことは興味深い。この事実か ら、少なくとも leathery lesion は、病変の表面が硬くなること、すなわち再石灰化が起きることは間違い ない。

soft および leathery lesion には、上述したようにエナメル質初期う蝕と異なり明瞭な表層は見られない。それでも再石灰化現象は起きる。上述したように筆者らの研究を含め²²⁻²⁴,多くの *in-vitro* 研究にて、表層のない象牙質脱灰病変でも再石灰化することが確認されている。しかしこれら leathery または soft lesion が、ミネラル密度の分布状態およびコラーゲンの残存状態に関して、どのような特徴を有するか、筆者が調べて範囲内では報告がない。今後、抜去歯を用いた検討が必要である。

<u>補足)根面う蝕および象牙質う蝕とコラーゲン分解の関係</u>:

フッ化物と直接関係はないが、ここで象牙質の脱灰現象に特有なコラーゲンの「変性と分解」との関わり方について、要約を紹介したい。はたしてコラーゲンの存在は、根面う蝕を含め象牙質う蝕あるいはその再石灰化の進行とどのように関連しているのか。現在の知見をもとに結論を先に述べると、①臨床試験では検証されていないが、*in-vitro*および動物実験の結果から、コラーゲンの酵素的分解を抑制することで、象牙質う蝕の進行は抑制することができるとの見方が多い。②一方、再石灰化の進行に関しては、研究報告が少なく一定の見解を得るに至っていない。以下にこれらの事例を述べる。

その前に、象牙質コラーゲンの分解メカニズムやプロセスを理解しなければならない。象牙質には、潜 在的コラゲナーゼ(latent collagenase)という酵素が、コラーゲン・マトリックスおよび象牙質ミネラルと 複雑に絡んで存在している。これらの酵素は亜鉛を必須金属としていることから、Matrix-Metallo-Proteases

(MMPsと略)と呼ばれている。この酵素は単一の酵素ではなく,複数の異なった特徴を有した一連の酵素群(family)を構成している。潜在性の MMPs について,Tjäderhane らは MMPs に特有な抗体を用いて, 脱灰された象牙質に MMPs の存在を確認した²⁵⁾。また彼らは、ヒト唾液にもゼラチンを分解する MMP 酵素(MMP-2と MMP-9)およびコラーゲンそのものを分解する酵素(MMP-8)の存在も確認した。これ らの酵素は、健全な象牙質では、MMPs の inhibitor (これを Tissue Inhibitor of MMP: TIMP-1 という)と結 びつき、latent の状態にあるためコラーゲンは分解されない。しかしこれらの酵素は酸で処理されると、こ の inhibitor が解除されて活性化され、pH が中性付近でコラーゲンを分解し始める²⁵⁾。また酵素トリプシ ンを脱灰された象牙質に加えると、コラーゲンの分解が促進される²⁶⁾。トリプシンにより、何らかのメカ ニズムで inhibitor が解除されると考えられる²⁶⁾。しかしう蝕関連細菌には、コラーゲンを分解する酵素 は検出されなかった²⁵⁾。これらのことから彼らは、う蝕関連細菌によって産生された酸によって MMPs が活性化され、象牙質う蝕の進行に大きな影響を与えると推察した。

MMPs 以外にも cysteine cathepsins という分解酵素も関与している。Mazzoni と Tjäderhane らは、象牙 質う蝕の進行、および充填物の接着界面でのコラーゲン分解性と充填物の長期耐久性に及ぼす MMPs の 役割について詳しく解説している^{27,28}。なお唾液にも同様な MMPs が含まれおり、Hedenbjörk-Lager らは 451 人の被験者を対象に、唾液由来の MMP-8 (collagenase-2) あるいは TIMP-1 の水準と象牙質う蝕との 関連性を調査した。その結果、象牙質う蝕を有する被験者において高いレベルの MMP-8 が検出されたが、 TIMP-1 との関連性は見出されなかった²⁹⁾。非常に興味ある知見であるが、この結果から直ちに唾液に含 まれる MMP-8 が、象牙質う蝕の進行に関与していると結論付けることはできないのではないかと、筆者 は考えている。 一方, 脱灰された象牙質のコラーゲンが分解される別のプロセスが報告されている。一般にコラーゲンそのものは、コラゲナーゼによってしか分解されない。しかしコラーゲンは酸や熱などによって容易 に変性作用を受け、ゼラチンに変化する。ゼラチンは、コラゲナーゼ以外のゼラチナーゼやタンパク分 解酵素によっても分解される。口腔内では、細菌および宿主由来の種々のタンパク分解酵素が知られて おり、これらの酵素によってコラーゲンは分解されることが考えられる。

Klont らは、脱灰程度のことなる象牙質に関して、細菌由来のコラゲナーゼ(Clostridium histolyticum) を作用させ、脱灰程度が大きいほど、分解程度が高いことを確認した³⁰⁾。また彼らは、脱灰 pH の異なる 条件下で脱灰した象牙質試料を(ブロックおよび粉末)を生理的条件下で静置し、潜在的コラゲナーゼ によって分解されたコラーゲンの量を測定した。また一方で、トリプシン酵素にて人為的に分解させた コラーゲンの量も測定した。その結果、脱灰 pH の影響は非常に小さかった。また潜在的コラゲナーゼ によって分解されたコラーゲンの量より、トリプシンによって分解された量の方が多かった³¹⁾。この結 果から、彼らは潜在的コラゲナーゼによる分解速度は、極めて遅いと推察した。すなわち根面う蝕にお けるコラーゲンの分解プロセスに関して、潜在的コラゲナーゼの寄与より、細菌や宿主由来のプロテア ーゼの寄与の方が大きいことが推察された³¹⁾。この推察を確認するため、彼らは脱灰した象牙質試料を 7 週間のあいだ被験者の口腔内に装着し、コラーゲンの変性と分解が起きるかどうか検討した³²⁾。その 結果、被験者によりコラーゲンの分解程度(1~47%)は大きく異なっていたが、これは各被験者におけ るタンパク分解酵素の活性の違いによると、彼らは考察した。またこのときの未分解(残留した)のコ ラーゲンは、わずかしか(0.5%)残っていなかった。これらの結果からも、上述のコラーゲンの分解は かなり速く起こり、細菌や宿主由来のプロテアーゼの寄与率が大きいと、彼らは考察した。

Buzalaf らは、MMPs や cysteine cathepsins など、象牙質と唾液に含まれる潜在性のコラーゲン分解酵素の活性を抑制することで、効果的な脱灰の抑制と再石灰化の促進が達成され、新しい象牙質う蝕の予防の道および充填物の長期耐久性の道が拓かれると、将来の研究の進展を期待している³³⁾。

それでは、コラーゲンの分解を抑制すると、脱灰は抑制されるのであろうか。Kleter らは、「A: 脱灰のみの方法」と「B: 脱灰とコラーゲン分解を交互に繰り返す方法」を用いて、様々なタイプの象牙質脱灰病変(う窩性の初期う蝕、表層下脱灰状、進行したエロージョン)を作成した。そして A と B で脱灰の進行程度を比較した。その結果、

いずれの病変でも B の方法を用いた場合, 脱灰がより進行した^{34,35)}。

筆者らも,同様な検討を行った。 すなわち試験群として1日のうち

「6時間の脱灰と16時間のコラー ゲン分解」を行い,これを3日間繰 り返した。比較群として「6時間の 脱灰のみ」を行い,残り16時間は コラーゲン分解を行わなず,これを 3日間繰り返した。その後,脱灰深 さ(μm)と脱灰量(vol%·μm)の比 較を行った³⁵⁾。その結果,「脱灰と

図14 コラーゲン分解が脱灰の進行に及ぼす影響

コラーゲン分解を交互に繰り返す」ことにより、「脱灰のみ」と比べて脱灰量および脱灰深さが大きくなることを確認した(図 14)。

それではコラーゲンの分解を抑制すると、なぜ脱灰が抑制されるか。以下のように推察される。分解 されないで残ったコラーゲン層のため、プラークで産生された酸が病変の内部に拡散する速度が抑制さ れ、脱灰が抑制される。また病変内部で溶解したミネラルイオンは、そのコラーゲン層のため外部への 拡散が抑制され、脱灰が抑制される。すなわちこのコラーゲン層は、一種の「拡散バリアー」として機 能していると考えられる。

根面う蝕の特徴の1つとして, 患部が褐色に見えることである。これはメイラード反応(Maillard reaction)による変化である。メイラード反応とは、タンパク質と糖の化学反応である。コラーゲンはタンパク質の一種であることから,飲食物に含まれる糖類あるいはその代謝物とコラーゲンとの間でメイラード反応が起こる。これは、コラーゲン分子と糖分子との間で架橋構造が形成される反応である。メイラード反応により、タンパク質(この場合はコラーゲン)は、その反応の程度に応じて淡い褐色から濃い褐色を呈する。これが根面う蝕や象牙質う蝕にて、褐色を呈する原因である。興味あることに、メイラード反応を受けたコラーゲンは、コラゲナーゼや MMPs などによる酵素分解の抵抗性を獲得する。このことは、褐色を呈したコラーゲンはう蝕の進行に関して、一種の自然防御機構を備えているとも考えられる。これに関連して Boonstra らは、酸脱灰された象牙質をグルタルアルデヒドで処理すると、脱灰抵抗性が発現したと報告した³⁰。これも架橋構造が形成されるからである。筆者らも、脱灰した象牙質にピロクトン・オラミン(PO)で処置すると、細菌由来のコラゲナーゼによるコラーゲン分解が抑制されることを見出した³⁵。この場合、PO がコラーゲン分子と結合し、コラゲナーゼの攻撃からコラーゲンを保護しているか、または PO がコラゲナーゼと結合し、その分解活性を抑制しているか、あるいはその両方が考えられる。

このコラーゲン分解の抵抗性に関して Xu らは,殺菌作用のないテトラサイクリン系化合物である CMT-3 という化合物 (Chemically Modified Tetracycline: MMPs によるコラーゲン分解を強く抑制する物質) をラットに塗布し,う蝕の発症率に及ぼす影響を検討した³⁷⁾。その結果,エナメル質う蝕と象牙質う蝕を 合算した場合,塗布群ではう蝕となった歯面の割合は 75.0%,非塗布群では 83.5%であった (有意差なし)。 しかし象牙質う蝕だけに限って評価した結果,塗布群では 33.3%であったのに対し,非塗布群では 70.8% であった (有意差あり)。このことから, CMT-3 は,エナメル質う蝕の発症抑制には無効であるが,象牙質 う蝕の進行抑制には有効であることが示唆された。また Sulkala らは CMT-3 に加えて,同様な作用を有す る化合物 (zoledronate) についても同様な動物実験を行い,いずれの化合物も象牙質う蝕 (う蝕となった 歯面の面積) が約半数に抑制されたと報告した³⁸⁾。この結果から,コラーゲン分解を抑制すれば,根面 う蝕を予防できる可能性のあることが示唆された。またフッ化物との併用で,より高い予防効果が得ら れる可能性が考えられる。

それではコラーゲンの分解は、それ以後の再石灰化の進行にどのような影響を及ぼすのであろうか。 Klont らは、表層のない象牙質病変と表層のある病変を作成し、次いで細菌由来のコラゲナーゼでこれら 病変を処置し、その後、再石灰化させた³⁹⁾。その結果、コラーゲンを分解しても再石灰化の進行には影響 がないことが示された。この結果は、象牙質での再石灰化においては、コラーゲンそのものが核となって 再石灰化が進行するのではなく、脱灰で残ったアパタイトの核が成長することで進行することを物語っ ている。この考察は、筆者らが本章の図13で示した結果に関する考察と同様である。

さてここで初期根面う蝕の進 行停止(あるいは再石灰化)につ いて、Nyvadらが行った見事な *in-situ*研究結果を紹介する⁴⁰)。彼ら は象牙質試料を口腔内に3ヶ月装 着し、そのあいだプラーク除去を 行わないで、初期う蝕病変を作成 した。次の3ヶ月間は、まず最初 に2% NaFを2分間、その1.5ヶ 月後にもう1回病変に塗布した。 またこの3ヶ月の間、1100 ppmの F歯磨剤を1日1回使用した。そ

図 15 F による初期根面う蝕の進行停止 上:再石灰化前の TMR 画像 下:F の使用による再石灰化後の画像

の後,試料を取り出し,TMR 解析を行い,病変内部のミネラル密度(vol%)や脱灰程度を評価した。その 結果,図 15 に示すように最初の3ヶ月のあいだに,やや不明瞭であるが表層のある初期う蝕が形成され (上図),その後の3ヶ月のあいだのF処置によって,プラーク除去を行わなかったにもかかわらず明瞭 な表層が形成された(下図)。これらのTMR 画像のミネラル密度分布を図16 に示した(最初の3ヶ月 は点線,その後の3ヶ月は実線)。その後の3ヶ月では表層のミネラル密度は約2倍に上昇し,病変内部 でもミネラルの沈着が顕著であった。

第14章: 唾液タンパク質(リン・タンパク質)と再石灰化現象

上述したように、唾液やプラーク液は HA に関して過飽和であり、Fが存在すれば FA に関しても過飽 和となり、これが再石灰化の原動力となる。それでは、なぜ健全な歯面に HA や FA は沈着しないのか (すなわち歯は大きくならないのか)、あるいはエナメル質に実質欠損のう窩では再石灰化が起きない

のか。その理由は、唾液に存在するリン・タン パク質(図1)がペリクルを形成して、歯面へ のHAやFAの沈着を阻止しているからであ ると筆者は考えている。Kousvelariらは、ペリ クルにPRPが存在していることを免疫化学的 な分析方法を用いて確認した¹⁾。またそのリ ン・タンパク質は、過飽和な唾液やプラーク液 においてHAの形成を強く抑制する²⁻⁶⁾。 Bennickらは、代表的な唾液リン・タンパク質 の一種であるProline-Rich Proteins(PRPs)は、 唾液に溶けているCa²⁺と結合すること、およ びHAの結晶表面に吸着することの両方の作 用があることを報告している^{7,8)}。そのような 唾液の二面性(過飽和であることで再石灰化

図1 唾液リン・タンパク質の作用に関する概念図:色付けした丸 く繋がったものがアパタイト表面の Ca サイトに化学吸着し、これが 層状に積みあがり、ペリクル膜を形成。この膜により、セリンに結 合している PO₃²⁻がアパタイト表面の Ca サイトに優先的に結合し、 HA の成長に必要な PO₄³⁻の結合を妨害する(×で表示)。
が可能,リン·タンパク質による石灰化沈着の阻止)のため,歯は溶けずに存在でき,また歯表面での余 計な石灰化沈着を阻止して正常な咬合機能が維持される。以下にその根拠となる基礎研究を紹介する。

まず唾液リン・タンパク質が, 過飽和な石灰化液において HA 結晶の成長を抑制する作用やメカニズム について解説する。その前に唾液リン・タンパク質の分子の特徴を述べる(図1)。この分子は, 数10 から数100個の種々のアミノ酸から構成される。そのアミノ酸の一種としてその分子にセリン

(CH·CH₂·NH₂·OH·COOH) が複数含まれている。セリンは,その OH 基と正リン酸(H₃PO₄; OP(OH)₃)の OH 基とのあいだで,脱水反応を起こし,リン酸エルテル結合を形成する(図 2)。このエ

ステル性のリン酸基は, 生理的 pH では R-O-PO₃²⁻のように 2 価の陰イオンとして唾液 に存在している(R はセリンの一部とその 他のアミノ酸の側鎖)。このリン酸基が歯 質アパタイト表面の Ca サイトに静電的に 強く吸着する(図1)。ちなみにこの唾液 リン·タンパク質が吸着し, その後, 唾液に

図2 脱水反応によるエステルの形成とリン・タンパク質の形成

含まれるタンパク質や高分子が、この吸着表面に積層する。この薄膜がペリクル 1.9-11)と呼ばれる。

本来であれば、図1に示したように唾液中のリン酸イオン(PO4³⁻)がCaサイトに、またCa²⁺がリン酸 サイト(PO4)に結合してアパタイト結晶の成長が起きる。ところがアパタイト表面のCaサイトに吸着 したリン·タンパク質は、リン酸イオンがCaサイトに結合するのを強く抑制(妨害)する。その結果、 アパタイト結晶の成長は、このリン·タンパク質の吸着程度("被覆率":後述する)に応じて抑制され る。このようなリン·タンパク質は幾つか知られており、PRPs^{2,4})以外にStatherin^{12,13})あるいは cystatins¹² などが詳しく研究されている。このうちStatherin は過飽和の石灰化液(リン酸イオンとCa²⁺から成る溶 液)から、リン酸カルシウムの自発的沈殿形成を抑制する作用も認められている^{5,6,14}。なおこれら PRPs やStatherin の分子構造、あるいは石灰化抑制で起きる化学構造の変化、さらにはこれらリン·タンパク質 から成るペリクルへの口腔細菌の付着など¹⁵)、優れた論文や総説が多数あるので、それらを参照して欲 しい¹⁴⁻²⁰。

Moreno や Hay らは, 唾液から PRPs と Statherin を分離し, これ らを用いて HA 結晶成長の抑制 作用を研究した^{2-4,21})。その実験 法は, 図 3 に示したように比較 的簡単な装置である。容器に人 工唾液(石灰化液)を入れ, 恒 温とした後, 一定量の HA 粉末 (図では黒点)を投入して撹拌 する。このとき, 石灰化液の組 成の変化(pH, Ca/リン酸イオン 濃度:これらをパラメータとす る)を経時的にモニターする。

図3 アパタイトの結晶成長に及ぼすリン・タンパク質(In: Inhibitor)の影響

リン・タンパク質(図3では Inhibitor: In と表示)を石灰化液に添加していない場合は、パラメータに大きな変化が見られる。Inhibitor 濃度が低い場合、パラメータの変化は顕著に減少する。高濃度の場合は、パラメータの変化はほとんど見られない。これは以下に示す1)式の化学反応が起きているからである。

74

1) $5Ca^{2+} + 3HPO_4^{2-} + H_2O \rightarrow (Ca)_5(OH)(PO_4)_3 + 4H^+$

前述したように, pH 中性領域の石灰化液に溶けている Ca²⁺と HPO4²および水分子(HOH)由来の OH から HA が形成される。このとき, HPO4²⁻と H₂O から H⁺が生成され,石灰化液の pH が低下することに 注目して欲しい。ちなみに,この式の反対方向の反応は,酸(H⁺)と塩基(HA)による中和反応,すな わち脱灰反応であることにも注目して欲しい。

図4にPRPsの一種であるPRP-3というリン・タンパク質が,HAの結晶成長に及ぼす影響を検討した 結果を示した²²⁾。このときのパラメータはリン酸イオン(P)濃度である。リン・タンパク質の濃度が高 くなるとP濃度の低下は顕著に抑制されることが分かる(図4a)。次にリン・タンパク質の濃度が最大 のとき(299 nM),すなわちHAの結晶成長がほぼ完全に抑制されたとき,1 ppmのFを添加すると石灰 化が進行した(図4bの破線)。この現象は、以下のように説明できる。この場合のHAは、粉末の微小 な結晶の凝集体であり、その全HA表面には溶液に溶解しているリン・タンパク質の分子数と比較して、 無数の数のCaサイトが存在している。またリン・タンパク質は高分子であり、そのためCaサイトに吸 着するには一定の"立体障害"が生じる。その結果、リン・タンパク質は全てのCaサイトには吸着するこ とができず、未吸着サイトが残る。一方、1 ppmFを含む石灰化液はフルオロアパタイト(FA)に関して 高度の過飽和状態となり、リン・タンパク質が未吸着のCaサイトにてFAの結晶が成長し始める(一体 化する)。このとき下式 2)の反応式に従ってパラメータ(P, Ca, pH)の変化が起きる。このように、元

2) $5Ca^{2+} + 3HPO_4^{2-} + F^- \rightarrow (Ca)_5(F)(PO_4)_3 + 3H^+$

の結晶の表面に新しい結晶(FA)が形成・成長して一体化する。前述したように,の現象を Epitaxy と 呼ぶ。他の例として, HA の表面に DCPD や OCP などのリン酸カルシウムの形成が知られている。

このように唾液リン·タンパク質は、基本的には石灰化を強く抑制する。しかしここで疑問が生じる、 それではなぜ初期う蝕は再石灰化できるのか。そのメカニズムを図5のモデルで説明する。唾液やプラ

ーク液には過飽和な状態 でミネラルイオンが溶存 している。またリン・タン パク質は、唾液やプラー ク液に溶存し、また初期 う蝕のエナメル質表面に ペリクルとして吸着して いる。初期う蝕の表層

(数 10 μm の厚さ)には、
 脱灰によって形成された
 μm 以下の無数の小さな"
 管"(channel)が内部の
 脱灰病変につながってい

る。この"管"の直径は、ミネラ ルイオンが通過するには十分大 きいが、リン・タンパク質が通過 するには小さすぎる。そのため ミネラルイオンだけが病変内部 に浸透できる。その結果、リン・ タンパク質の影響を受けること なく、病変内部では過飽和な状 態が維持できる。それにより脱 灰で小さくなったアパタイトは

図5 再石灰化現象と唾液リン・タンパク質との関連性

大きく成長できる²³⁾。すなわちこのメカニズムのため,表層を有する初期う蝕のみが再石灰化可能となる。表層のないう窩ではペリクルで被覆されているため,再石灰化は起きない。

それではエナメル質初期う蝕が表層を残す限り,再石灰化が期待できるのであろうか。筆者は必ずし も期待できると限らないと考えている。その理由は,以下のように推察される。すなわち前述の"管"の 直径は,脱灰の進行が継続した場合,大きくなる。その結果,リン・タンパク質の分子サイズより大きく なれば病変内部に侵入して,再石灰化(結晶成長)の促進を妨害するからである。従って,エナメル質 初期う蝕の再石灰化を期待するには,早期発見と適切な再石灰化措置(プラーク・コントロールやフッ化 物の積極的利用)を行い,その経過を注意深く観察する必要がある。

病変内部のタンパク質の存在し関して, Robinson らはエナメル質初期う蝕(サンプル)の病変内部に 吸着しているタンパク質が, Ca²⁺の取り込み(すなわち再石灰化の進行)にどのような影響を及ぼすか検 討した²⁴⁾。初期う蝕を有する抜去歯を2分割し, 一方を次亜塩素酸ナトリウム(NaOCl)で漂白処置し

(タンパク性物質の分解と除去),もう一方を未処置(コン トロール)とした。次いで,放射性 Ca²⁺を含む溶液に浸漬 し,取り込まれた放射性 Ca²⁺を測定した。その結果,NaOCl で処置すると,エナメル質表層から内層にわたって放射性 Ca²⁺の取り込み量の増加が認められた(図 6)。このことか ら,病変内部に存在するタンパク質は再石灰化の進行に関し て抑制的に作用していることが推察される。その後,彼らは このタンパク質がアルブミンおよびアミラーゼではないか と考え,同タンパク質の抗体を用いてその同定を試みた。そ の結果,健全領域と比べてミネラル密度が約10%減少した領 域では,これらのタンパク質はわずかにした認められなかっ たが,ミネラル密度が10~20%減少した領域では明瞭に認め られた^{25,26)}。このうちアルブミンは、アパタイト結晶の成長

のを抑制作用に関して、これまで述べてきたリン・タンパク質と比べて小さいながらも、一定の抑制作用 を有することが知られている^{27,28}。一方、アミラーゼにアパタイト結晶の成長を抑制する作用があるの か、筆者が調べた範囲内では不明であった。しかしアミラーゼには、本章で言及している PRPs や Statherin などのリン・タンパク質より弱いが、アパタイトに対して一定の吸着力が確認されていることから²⁹, アパタイト結晶の成長を抑制すると思われる。

下記に,筆者らが検討した,リン・タンパク質が脱灰歯質の再石灰化に及ぼす影響に関する研究成果を 3つ紹介する。①エナメル質初期う蝕の再石灰化に及ぼすヒト唾液由来のタンパク質とFの影響,②HA の結晶成長に及ぼすカゼインの影響,③脱灰象牙質の再石灰化に及ぼすカゼインとFの影響。ここで用 いたカゼインの分子構造は唾液リン・タンパク質に類似しており,これを唾液リン・タンパク質のモデル物 質とした。

①ヒト唾液リン·タンパク質がエナメル質の再石灰化に及ぼす影響²³⁾

ヒトエナメル質に人工的に初期う蝕を形成し、これら試料を4群に分け、以下の4つ異なる再石灰化 液に浸漬し、再石灰化させた。①ヒト唾液のミネラルイオン濃度に近い人工唾液(1 mM CaCl₂, 3 mM KHPO4, 100 mM NaCl, 100 mM 酢酸 Na, pH6.3)にて4週間浸漬 ②この人工唾液に1 ppm Fを添加して4 週間浸漬 ③ヒト唾液から、リン・タンパク質(図7ではPと略記)を含む高分子のみを抽出し、これを① と同じ組成の人工唾液に添加して4週間浸漬 ④ヒト由来の高分子を含む人工唾液に1 ppm Fを添加して 4週間浸漬。

4週間の再石灰化の期間中に QLF 装置を用いて,再石灰化の進行状況をモニターした(図7)。QLF 法による再石灰化率の計算法

は、文献に解説した³⁰⁾。また 4週間後に TMR 法にて各群 の試料における初期う蝕のミ ネラル密度などを評価した

(🛛 8) 。

その結果, QLF 装置による 測定から,以下のことが明ら かになった。上記の再石灰化 液①と②の比較から,唾液由 来の高分子(リン・タンパク

質を含む)は、再石灰化の進行を妨害した (図7の左)。再石灰化液③と④の比較か らFが存在している場合、唾液由来の高分子 が含まれていないと、再石灰化の進行は10 日前後のかなりの初期段階で停止した。し かし唾液由来の高分子が含まれていると、再 石灰化の進行は4週間を通して継続した

(図7の右)。

TMR 画像の結果からは, 再石灰化液①と ②の比較から, QLF 法の場合と同様, 唾液由 来の高分子は, 再石灰化の進行を妨害した

図7 唾液タンパク質(P)および1ppmFがエナメル質初期う蝕 の再石灰化の進行に及ぼす影響(QLF法による評価)

図8 再石灰化に及ぼすヒト唾液タンパク質の影響(TMR 画像)

(図8の上から2つの比較)。再石灰化液③と④の比較からFが存在している場合,高密度の石灰化物 (恐らくFA)の沈着層の形成を認めた(図8の上から3つ目)。またその下層部の初期う蝕病変がほ とんど再石灰化されないまま残っていることも認められた。それに対し再石灰化液④では,そのような 沈着層の形成は認められず,病変内部まで再石灰化が進行していることが確認された(図8の上から4 つ目)。

それではFが十分存在しているにもかかわらず, 唾液リン・タンパク質が添加されていないと, なぜ再 石灰化は進行しないか。図8の上から3つ目のTMR画像とそのミネラル密度のプロファイルにて示さ れているように, 高密度の石灰化物の沈着層が病変内部の再石灰化に先行して形成されたためと考えら れる。すなわち, 図5で示したように病変内部につながる微細な管(channel) がこの沈着物の層によっ て封鎖され, 再石灰化に必要なミネラルイオンとFが病変内部に浸透できなくなったことによると推察 される。

それに対し, 唾液リン・タンパク質が存在し, かつ Fが十分存在していると, 表層での高密度の石灰化物の沈着層の形成が抑制され(channelの温存), Fによる再石灰化促進作用が十分発揮されたと推察される。この4つの群のうち, 実際の口腔に近い条件は唾液リン・タンパク質を含む④群である。もしこのようなリン・タンパク質が唾液に含まれていなかったら, たとえフッ化物を使用しても実質的な再石灰化は期待できないと考えられる。

またインビトロ研究にて、このようなリン・タンパク質を含まない人工唾液で再石灰化の研究をした報告を多く見かける。そのような場合、フッ化物は再石灰化の進行を抑制するという結論を招きかねない。さらに①群と②群の比較から、唾液リン・タンパク質そのものは再石灰化の進行を抑制する作用があることから、インビトロ研究にて再石灰化を促進したとする報告も、このようなリン・タンパク質による再石灰化の抑制作用を勘案して評価する必要がある。

このリン・タンパク質に関連して Zahradnik は、エナメル質初期う蝕の再石灰化に及ぼすペリクルの影響を検討した³¹⁾。彼は、人工的に作製した初期う蝕試料を一定時間(1日~7日間)、ヒト唾液に浸漬してペリクルを形成した。その後、人工唾液に試料を10日のあいだ浸漬し、TMR 法による再石灰化の進行状況とエナメル質表面への石灰化物の沈着状況を観察した。その結果、ヒト唾液に浸漬する時間が長いほど、再石灰化の進行は遅れたが、初期う蝕の内層での再石灰化は確認された。また同時にペリクル膜の形成は、エナメル質表面での石灰化物の沈着を抑制した。これらの結果は、図7と8で示した結果と一致する。再石灰化の進行が遅れた要因として彼は、唾液への浸漬時間が長いほど、ペリクル膜の形成が進み(筆者の考えでは、ペリクル膜の厚みや緻密度の増加など)、その結果、脱灰病変の内部に浸透するミネラルイオンの拡散速度がペリクル膜によって抑制されると推察した。

このように唾液リン・タンパク質あるいはペリクルは、初期う蝕の再石灰化の進行に大きな影響を及ぼ すことが示されたが、そのメカニズムは歯石沈着にも関連すると推察される。唾液リン・タンパク質ある いはペリクルに関連して筆者は、以下のような素朴な疑問を抱いている。

1) 唾液リン・タンパク質あるいはペリクルは、歯石形成のメカニズムとどのような関係にあるのか。

2) フッ化物の利用は、なぜ歯石沈着を促進しないのか。

3) 欧米で市販されている「フッ化物と歯石抑制剤が配合された歯磨剤」について、フッ化物によるう蝕 予防(再石灰化の進行)と歯石形成の抑制(石灰化の抑制)とが、なぜ臨床的に両立するのか。

これらの疑問について、筆者が執筆した「歯石? もう一度見直してみよう、この不思議」を参照された

②ヒト唾液リン·タンパク質と類似な分子構造を有するカゼインが石灰化に及ぼす影響³²⁾

再石灰化に関する研究を行うとき、いつもヒト唾液あるいはそこから抽出したリン・タンパク質を使 用することは、下記のような非常に大きな問題を伴う。①ヒト唾液は、細菌など微生物類を多く含むた め短時間で腐敗・変性し、唾液リン・タンパク質の性状が大きく変化する。②重炭酸イオン(HCO3)が

脱炭酸という分解を起こして OH-を生成し、唾液の pH がアルカリ 性に変化する。③唾液の組成は個 人差や個人内でも日間変動があ り,一定の組成の唾液の確保は困 難である。④唾液を多量に集め, リン・タンパク質を精製・抽出す ることも多大な時間を用する。こ のような理由から,再現性のある 実験結果が得られにくい。そこで に着目した。このカゼ

<mark>表 1</mark> カゼインと Statherin あるいは PRP の比較							
タンパク質	Statherin	Proline-rich Proteins (PRPs)	カゼイン (α _{s1} , α _{s2} , β)				
分子量	5.38 kDa	36.8 kDa	19-25 kDa				
等電点 pH	4.2	4.7	4.1 - 4.5				
アミノ酸の数	43	150	169 - 209				
セリン結合性のリン酸基の数	2	2	α _{s1} ; 8 - 9, α _{s2} ; 10-13, β; 5				
セリン結合性リン酸基の部位	N-末端(2と3)	N-末端(8と22)	分子全体に分布				
無刺激唾液中の濃度	16 - 147 mg / L	0 - 80 mg / L					

それに代わる物質として筆者らは、牛乳由来のカゼイン

インは、比較的安価で試薬として一定の品質のものが 得られ、実験結果の再現性の確保として適切と考えられ る。図9にカゼインの分子構造のモデルを示した。

表1に示したように、カゼインにはタイプの異なる分子 (α_{s1}, α_{s2}, β, κ) が知られているが, 今回実験で用いたタイ プは α_{s1} と β の混合物である。唾液に含まれる濃度は、 Statherin では 16 - 147 mg/L, PRPs では 0 - 80 mg/L である。PRPs は、全唾液タンパク質の 約28%を占める 7。筆者らは、まずカゼイン 濃度と石灰化抑制作用との関連性を検討し Ca た。Ca²⁺とリン酸イオンを含む石灰化液(HA 濃度 に関して過飽和液, pH7.2) に, 異なる濃度の (mM)カゼイン(0-100 ppm または 0-100 mg/L) を加え、これに HA 粉末を加えた。37℃の定 温にて撹拌し.2時間ごとに石灰化液を採取し. HA 粉末を濾過除去し、Ca 濃度の変化を8時

間後までモニターした。またリン酸基をほ とんど含まない脱リン·カゼイン(DC:100 ppm) についても検討し、リン酸基の影響を調 べた。その結果、カゼイン濃度が高くなるに 伴い. 石灰化液中の Ca 濃度の低下は抑制され

図9カゼイン分子の概念図 アミド結合したアミノ酸のうち、セリンの水酸 基(OH)に無機のリン酸イオンがエルテル 結合した様子

た(図 10)。すなわち HA の結晶成長を有意に抑制する作用が認められた。また 100 ppm の脱リン・カ ゼインは, 20 ppm のカゼインの抑制活性と同レベルであった。

上述したように、リン・タンパク質は HA 表面の Ca サイトに吸着することが知られている¹⁹⁾。従って 脱リン酸したカゼインが、HA の結晶成長の抑制活性が低下したことは、これらの報告と一致する。Hay らは、脱リン酸したリン・タンパク質では約 10 倍の吸着力の低下および約 100 倍の石灰化抑制活性の低 下が起きたと報告ている¹⁹⁾。若干の抑制活性が残っていたのは、カゼイン分子に存在するカルボキシル 基によると推察される。Van Kemenade らも、種類の異なるカゼイン(κ , β , α_{sl})に、石灰化物の生成を抑 制する作用のあることを報告している³³⁾。

次に下記の式 1)で表される Langmuir の等温吸着モデルを用いて, HA の表面へのカゼインの吸着特性

式 1) C/Q = 1/NK + C/N

を評価した。このモデルでは、カゼイン分子が HA の表面に単分子の膜として吸着することを想定している。ここで Q は単位面積あたりの HA 表面に吸着したカゼインの量(µmol/m²), C は吸着反応が完了した(平衡に達した)ときのカゼイン濃度(nmol/L), K は HA への吸着定数(意味としては吸着力; ml/µmol), N は単位面積あたり HA 表面に吸着した最大モル数(意味としては被覆率に相当; µmol/m²)である。

実験は、37℃の一定温度にて以下のように行った。種々の初期濃度(C₀: nmol/mL)のカゼイン溶液(体積 V mL)を調製し、この溶液に、比表面積(SSA: m²/g)が既知の HA(g)を一定量投入してよく撹拌し、 HA 表面への吸着反応が平衡に達するまで一定時間(約 20 時間)待つ。その後、HA 粉末を除くため反応 液を濾過し、特定波長にてカゼイン濃度(C)を測定する。このとき、HA に吸着したカゼイン量(Q)は 下記の式 2)を用いて求まる。次いで各カゼイン濃度(C)を x 軸として、それに対応する Q の量の商(C/Q)

式 2) $Q = [(C_0 - C) \times V] \div [g \times SSA]$

の値を y 軸としたグラフを作成する(図 11)。このグラフは,上記の式 1)より直線となる。この直線において, y 軸の切片の値(1/NK)とグラフの傾き(1/N)を測定値として読み取る。1/N から N の値が得ら

カゼインの場合,Kは17.2×10³ mL/µmol,Nは0.029 µmol/m² であった。ちなみに Aoba らは PRPs のうち PRP1のKの値は14.7×10³~26.2×10³ ml/µmol と報告 している³⁴⁾。今回のカゼインの値は、この範囲とよく 一致している。同様に Moreno らは、K の値として 18.1×10³~26.7×10³ ml/µmol と報告している³⁵)。

れる。1/NK に N の値を代入して K の値が得られる。

このように HA 表面への吸着特性に関して, カゼ インと PRP に高い類似性が認められたことから, 筆 者らはインビトロの基礎研究にて, 唾液由来のリン・ タンパク質の代わりにカゼインが使用できるのでは ないかと考えている。

③カゼインが脱灰象牙質の再石灰化に及ぼす影響 30)

さらに筆者らは、(再)石灰化沈着に及ぼすカゼインの影響 を検討した。Ca²⁺とリン酸イオンおよびカゼイン(最大 100 ppm 配合)を含む人工唾液(試験石灰化液)を調整し,比較石 灰化液としてカゼインを除いた人工唾液を調製し,これに表 面研磨したエナメル質および象牙質を浸漬した。1週間の浸漬 後,エナメル質および象牙質の表面を電顕(SEM)にて観察し た。その結果,比較石灰化液では,歯面が HA 結晶(結晶の形 態から判断)で完全に覆われていた。一方,試験石灰化液では 結晶の沈着は全く観察されなかった(図 12)。象牙質でも同様 な結果が得られた。

 図 12 石灰化後の SEM 画像
 左:カゼインなし ⇒ 石灰化物の沈着
 右:カゼインあり ⇒ 沈着物は見られない (エナメル質小柱が見られる)

最後に,筆者らは脱灰された象牙質(初期根面う蝕のモデル)の再石灰化に及ぼすカゼインとFの影響 について検討した。牛象牙質から約 240 μm 厚さの切片を作成し,象牙質表面を残し切片断面を耐水性の 膜で被覆した。次いで一定の条件下で脱灰し,これを試料とした。

その後,TMR 法にて脱灰程度 (ΔZ: vol%·um)を測定し、試料の脱灰程度 の平均値が同一レベル(ΔZ は約 4800 vol%·um) になるように 6 群に分け た。これを,異なる濃度のカゼイン (0,10,100 ppm) とF⁻(0,1 ppm) を 含む6種類の再石灰化液に4週間浸 漬して,再石灰化の進行を同一試料 についてモニターした (Single Thin Section 法)。その結果、群によってか なり異なる再石灰化の進行程度が観 察された(図 13; Cas はカゼイン)。 主な結果は、以下のようであった。① 大きく見て, Fが含まれていない群よ り、含まれている群において再石灰 化の進行程度は高い傾向にあった。 この傾向は当然であろう。②それに

対してカゼインの影響は、濃度依存

性ではなかった。すなわち予想に反して、カゼイン濃度が100ppmの場合、10ppmの場合と比べて再石灰 化の進行程度が高い傾向にあった。あたかもカゼインは、その濃度が高い場合は、再石灰化を促進してい るようであった。この知見は、図10で示した HA の結晶成長に及ぼすカゼインの作用が濃度依存的であ った知見と必ずしも一致しない。現時点ではその理由は明確ではない。③一方、カゼインと Fが共存して いる場合では、最も短期間で再石灰化が進行した群は、D群(カゼイン濃度:10ppm、F:1ppm)であった。 この結果に対する説明は、前述のカゼイン単独での結果と一致していない。しかしながら、カゼインは図 14で示したように再石灰化後において、脱灰表面での過剰な石灰化物(たぶん FA)の形成を抑制しつつ も,脱灰病変の内部での 再石灰化の進行には妨害 作用を及ぼさないことも 明らかになった。4週間 の再石灰化後の試料の TMR 画像の代表例を示 した(図14)。同図の左(a) は再石灰化前の画像で, う窩状の脱灰病変が認め られる。ただしエナメル 質う蝕でのう窩と異な り,(a)では病変内部に微

量なアパタイトが残存し、これが再石灰化の基盤になっていると思われる。

中央の画像(b)では、1 ppm Fのみ(カゼインを含まない再石灰化液)の場合で、エナメル質初期う蝕の 場合と同様(図8)、表層に高い密度の石灰化物が認められた。しかしエナメル質の場合と異なり、病変 内部でも一定の再石灰化が認められる。その理由は、以下のように推察される。象牙質では象牙細管など が存在するため、エナメル質の場合より、高い密度の隙間構造を有している。またコラーゲン・マトリック スが一定の隙間を温存させる。そのため象牙質表面での高い密度の石灰化物の沈着にもかかわらず、ミネ ラルイオンが病変内部に浸透できる。左(C)では、100 ppmのカゼインと1 ppm Fを含む場合で、脱灰表面 に過剰な石灰化物の形成は全く認めず、病変内部まで再石灰化の進行がほぼ完了した様子が観察された。

今回の結果から, 脱灰象牙質 の再石灰化の進行に及ぼすカゼ インとFの影響は、エナメル質 とはかなり異なることが推察さ れた。すなわち多数の象牙細管 やコラーゲン・マトリックスに よる高い隙間構造および脱灰病 変内に残った微結晶のアパタイ トによって、エナメル質でのう 窩状病変では起きない再石灰化 現象が象牙質では起きると考え られる。一方,高い隙間構造の ためカゼイン分子も病変内部に 侵入できると考えられる。その 結果. コラーゲン・マトリックス とカゼインとの相互作用, ある いはカゼインとアパタイト結晶

図 15 唾液機能に関与する成分

との相互作用など,Fとアパタイト結晶のと直接的な相互作用以外に,多様な相互作用が複雑に関与していることが思われる。

本章を締めるにあたって、多くの研究者が抱いていると思われる唾液の不思議さに関して、筆者も一 言感想を述べたい。上述したように、唾液には HA(歯質ミネラル成分)に関し、過剰のミネラルイオン が溶けている(過飽和)。逆に考えると、過飽和でないとすると、歯質ミネラル成分は時間とともに、溶 けて無くなってしまう。過飽和状態は、歯の溶解を抑制している。一方で、過飽和な状態は、HA が歯の 表面に石灰化沈着することを許している、すなわち歯は経時的に大きくなってしまう。しかしながら、 これまでそのような奇妙な現象は報告されていない。それは、本章で解説したように、唾液リン・タンパ ク質が、過剰な石灰化沈着を抑制する作用を有しているからである。唾液にはこのような巧妙なメカニ ズムが備わっている。これは、進化の過程で獲得されたものであろうか、驚くべき神秘である。唾液に は、再石灰化に関わる要因以外に、多くの機能やそれに関与する成分が含まれている。Van Nieuw Amerongen らは、唾液の機能に関する総説の中で、唾液の機能とその成分を図 15 に示すように分類した

³⁷⁾。「歯」に関しては,再石灰化の項目以外に,脱灰抑制に関与する成分として「ムチン」,潤滑・粘性 (歯の磨耗の抑制と口腔粘膜の保護)に関与する成分としても「ムチン」,さらにはプラークで産生さ れた酸や飲食物由来の酸をすみやかに中和する成分として「重炭酸系など」が知られている。これらの 機能の他に,多くは微生物の抑制(抗菌,抗真菌,抗ウイルス)に関する成分が知られている。

驚くべきことに,これらの成分は多種多様であり,どうしてこれ程多くの成分が唾液に存在するのか。 目的があってのことか,それとも単なる偶発的なことなのか。合理的な説明は見当たらないが,非常に興 味深いことである。

第15章:隠れう蝕(hidden caries)の形成メカニズムと多様な病理所見

隠れう蝕については第6章で言及したが、その形成メカニズムや多様な病変の実態(病理所見)などについては、詳細には解説しなかった。一方、本章と同様な内容は、別に報告している(PART 1: Hidden Caries を知る)¹⁾。その報告では紙面の制約で隠れう蝕の多様性を示す TMR 画像とそれに対応する実態画像の掲載には制限があった。そこで本章では、これらの画像を幾つか追加した。また隠れう蝕の形成メカニズムについて再度解説し、う蝕(脱灰現象)への理解を深める契機となればと思う。

1) 咬合面での非う窩性の初期う蝕の観察:

筆者らが収集した抜去歯の中から,咬合面に て象牙質にまで至る明瞭なう窩や欠損は認めら れないが,明らかに脱灰を認める試料(非う窩性 の初期う蝕)を選び出し,これらを次亜塩素酸ナ トリウムにて漂白した。図1には,漂白する前と 後の実態画像を示した(未公開資料)。その結果, 着色部位は漂白されて白くなり,漂白前にて疑 われた脱灰領域は,見た目より大きく広がって いることが観察された。これは,脱灰によりエナ メル質に隙間が多く形成され,その隙間に飲食

図1 咬合面の非う窩性の初期う蝕の観察: 漂白の前後 で, 脱灰の程度は見た目より広がっていることが分る

物など由来の着色物質が沈着したことを示唆している。白く見える理由は、隙間(空気あるいは水)とエ

ナメル質結晶とのあいだで光の屈折率が異なり,結晶表面で光が乱反射したことによる。ただしこの試料 について,エックス線撮影や TMR 画像を取得していないので,脱灰侵襲がどの程度深く達していたかは 不明である。

このような非う窩性の初期う蝕に遭遇した場合,いろいろな対応が考えられる。第1は,再石灰化する と予想し,非侵襲的処置(フッ化物の塗布やプラーク・コントロール)と注意深いモニタリングに注力す る。ただし,これまで述べてきたように必ず再石灰化による改善が起きるとは限らないことに留意して欲 しい。第2は,たとえレントゲン撮影にて明瞭な病変は見られないが,患者によるプラーク・コントロー ルが十分期待できなく,非侵襲的処置では侵襲が進行してしまうと予想された場合,CRなどで充填する。 第3は,視認はできないが小さなう窩の形成も考えられ,シーラント処置する。このような非う窩性の初 期う蝕の場合,active(活動性)か arrest(停止性;恐らく再石灰化を伴う),脱灰の広がりの程度,あるい は患者の協力度や好みにより,対応は異なると思われる。非う窩性の初期う蝕をフッ化物などで,active か ら arrest に改善する効果について systematic review やガイドラインが報告されている^{2,3})。是非,一読して 欲しい。

2) 隠れう蝕の多様性を示す TMR 画像とそれに対応する実態画像:

同様に筆者らが収集した抜去歯の中から, 典型的な隠れう蝕(この場合は, 象牙質まで侵襲が及んでい るもの)と思われる歯を選び出し, その1つの歯から複数の切片(約120µmの試料)を作製し, TMR 画 像と実態画像を得た。ここでは, その中から幾つかの画像を紹介する(非公開資料)。左が TMR 画像で, 右にはそれと対応する実態画像を示した。実態画像では, 光の透過性の高いエリアは暗く, 低いエリアで は明るく見える。なお実態画像にて, 象牙質に広く暗いエリアが見られるが, これは「透明象牙質」と思 われる。切片を水に浸して観察したため, 水の屈折率と水を含む透明象牙質の屈折率が同等となり, 乱反 射が起きなくなって暗く見える。TMR 画像では, この暗いエリアでもミネラル密度は全く健全であるこ とに注目して欲しい。

これらの試料に共通することがいくつかある。第1は、実態画像で見られる侵襲・変性の程度(ミネラ ルの損失とコラーゲンの変性)と TMR 画像で観察されるミネラルの損失とのあいだで、大きな不一致が 認められることである。 すなわち実態画像で見られる侵襲・変性の方が、TMR 画像で見られる侵襲の程度 と比べて大きく見える。これをどのように考えたら良いのであろうか。特に注目する点は、ミネラル密度 の損失が見られるエリアの周辺に広がった着色エリアである。なぜこのような着色が起きるのか。歯冠 象牙質う蝕や根面う蝕で見られる褐色は、主にメイラード反応 (Maillard reaction) によるものである 4.5)。 一般的にこの反応は、砂糖やグルコースなどのような還元糖とアミノ化合物(アミノ酸、ペプチドおよび タンパク質)を加熱したときなどに起きる。特に反応が進行した生成物を AGEs (Advanced Glycation End Products) と呼ぶこともある。象牙質う蝕では、コラーゲンというタンパク質と外来性の砂糖(あるいは その代謝物)などが、長期間にわたって少しずつ体温下で反応することで着色を呈すると考えられる 4.5)。 この着色(メイラード反応)は, コラーゲンが象牙質ミネラルで覆われているので, 非脱灰の健全象牙質 コラーゲンでは起きないが、一旦脱灰が起きてコラーゲンが露出してはじめて起きることから、この着 色のエリアでは脱灰が起きたことを示唆している。しかしこの褐色エリアの TMR 画像にて、ミネラル密 度が健全状態に近いことが見て取れる。この場合、ここで再石灰化が起きたことが考えられる。それとも 僅かの脱灰によってコラーゲンが露出しメイラード反応が起きたが、再石灰化は起きていないとも考え られる。ちなみに初期根面う蝕では、濃い褐色エリアではう蝕は停止性で、淡い褐色は進行性と考えられ

ている 5)。

このメイラード反応を受けたコラーゲンは、酵素によるコラーゲン分解に対して抵抗を示すことが知られている⁶。これは、コラーゲン分子と糖またはその代謝物のあいだで架橋構造(cross-link)が形成されたからである⁶。上述したように濃い褐色エリアでは、う蝕は停止性であるとされている。これはメイラード反応が進んだことでコラーゲンの分解が起きにくくなっているかも知れない。

第2は、実態画像においてエナメル質で見られる白いエリアが、TMR 画像では健全に近いミネラル密度を示す場合である。これは、実態画像において白黒のコントラストの程度とミネラル損失の程度とは、 必ずしも相関しないことを示している。この不一致は、実態画像のみならず偏向顕微鏡で得た画像でも筆者は経験している。従ってミネラル密度に言及する場合は、必ず TMR で確認することが必要である。

第3は、一見、第2と類似しているように思われるが、全く無関係の現象である。すなわち実態画像に おいてエナメル質で、強い白色のエリアがしばしば認められる。しかしながら TMR 画像では全くミネラ ル密度の減少を認めない。これは、いわゆる非脱灰性の白斑であり、脱灰とは無関係である。このような 非脱灰性の白斑は、かなりの頻度で認められる(第10章を参照)。

第4は、象牙質のTMR 画像にてミネラル密度は全く正常に見られるが、実態画像では象牙細管の走向 に沿って白く見える場合がある(透明象牙質とは逆の見え方)。これは、ミネラル密度に関係しない、何ら かの後天的変化(光の屈折率や乱反射に関係した現象)が象牙細管に起きたことによるか、象牙質の発生 の段階で起きた先天的な現象によるものかも知れない。

以下に8個の試料の画像を示す。試料①から③については具体的な特徴を解説するが、それ以外の試料 (④から⑨)についても類似な特徴に注目して観察して欲しい。

資料①:TMR 画像では, エナメル質にある大小2つの 裂溝部に中程度の脱灰が認められる。またその直下の EDJ にも脱灰が認められる。しかしこれら2つの裂溝 はいずれも進行した侵襲には見えない。それに対応し て,実態画像ではエナメル質に明瞭な白いエリアと EDJ 下の濃い褐色, またそのより下部に淡い褐色を呈 したエリアが広がっている。侵襲程度は, TMR 画像と

比べて、明らかに実態画像にて進行している印象を受ける。また右端のエナメル質に凸レンズ状の白いエ リアが認められる。しかし、TMR 画像では脱灰の形跡は全く認められない。この白いエリアは非脱灰性の 白斑かも知れない。

資料②:TMR 画像では,中央のエナメル質の裂溝部に 強い脱灰が認められる。その裂溝部の直下の EDJ にも 強い脱灰が認められる。またエナメル質の表層付近に 弱い脱灰を認めるが,これらはいずれも進行した侵襲 には見えない。それらに対応した実態画像でもエナメ ル質に脱灰を示唆する白いエリアと EDJ 直下の象牙質

でも黒っぽい影が見られる。一方、TMR 画像にて非常に奇異に見えるが、左側の象牙質に大きな空洞のような侵襲が認められる。しかしその上部のエナメル質には全く脱灰は認められない。それらに対応して 実態画像でもエナメル質に脱灰を示唆する白いエリアは見られないが、EDJ 下に暗いエリア(空洞?)と 淡い白色のエリアとが認められる。侵襲程度は、TMR 画像より明らかに実態画像にて進行しているよう に見られる。また左右のエナメル質に白いエリアが広く認められるが、TMR 画像では脱灰の形跡は全く 認められない。この白いエリアも非脱灰性の白斑かも知れない。

資料③:TMR画像では, 裂溝部に軽度の脱灰が認め られる。この脱灰の直下には, EDJ に沿ってエナメル 質に帯状に非常に微か脱灰が認められる。また右側の エナメル質には隣接面と思われるエリアに軽度の脱 灰を認める。実態画像では, 裂溝部の脱灰に対応して 白いエリアが認められる。また EDJ 付近には, TMR 画

像と対応して侵襲による思われる僅かな変色(特にエナメル質側)が認められる。また右側のエナメル質 には明瞭な白色(脱灰)が認められる。左上に白いエリアが認められるが、TMR 画像では脱灰の兆候は全 く認められない(非脱灰性の白斑)。

以下に、資料④から⑨の TMR 画像と実態画像を示した。咬合面う蝕(隠れう蝕)の病理の複雑さが垣 間見られる。

3) 発症と進行メカニズム(筆者の仮説):

なぜ隠れう蝕のような病変が形成されるのか,不思議な現象である。その発症メカニズムについての研究は非常に少なく,定説はないようである。筆者は,Lynchらの研究を踏まえて2つのステップに分けて その発症メカニズムを推察した⁷⁾。図2を参考にしながら,筆者が考えるメカニズム(仮説)を解説した い。

第1ステップ: その発症の初期に起こる脱灰現象で,エナメル質での表層下脱灰病変の発症メカニズム

と同じ脱灰現象である(この段階では脱灰侵襲は象牙質まで達していない)。

<u>第2 ステップ</u>: 上記で解説した表層下脱灰現象が象牙質に向かってさらに進行する過程である。エナメ ル質には溶けにくい結晶と溶けやすい結晶とが混在し⁸⁾, pH が低下すると溶けやすい結晶が優先して消 失して,結晶と結晶の間に隙間ができる。pH が回復すると元のエナメル質結晶と比べて溶けにくい結晶 (より純粋な HA に近い結晶)がその隙間の一部に沈着する(再石灰化)。またフッ化物が存在すると,さ らに溶けにくい結晶 (FA) がその隙間に沈着し,同様に隙間の一部を埋める。この現象(脱灰と再石灰化 の繰り返し)がエナメル象牙境(EDJ)まで進行する。

第3 ステップ: その結果, エナメル質の表層から EDJ まで実質欠損を伴わない, 隙間を多く含む厚い脱 灰層ができあがる。この脱灰層は, もはやプラークで産生された酸では溶けない(あるいは溶けにくい) エナメル質結晶に変質されている。そのため, この隙間は酸が通過する通路として機能する。従ってプラ ークで産生された酸は, この変質エナメル質を溶かすことなく, この通路を通過して象牙質に達する。一 方, 歯髄からは Ca²⁺などのミネラルイオンの供給があり, 脱灰を抑制するように作用するはずである⁹。 しかし象牙質への酸の拡散が優位となって, 非常に溶け易い象牙質は容易に脱灰される。

<u>第4 ステップ</u>: その結果, 脱灰されたミネラルイオンは外(口腔)に向かって(濃度勾配に従って)拡散し, その一部は拡散の途中で上記のエナメル質全体に及ぶ脱灰層の再石灰化に使用される。これは, あたかも象牙質が犠牲となってエナメル質の脱灰を食い止め, かつ強化しているようにも解釈できる⁷⁾。こうしてエナメル質に実質欠損を伴うことなく, 象牙質が優先的に侵襲を受けて, 隠れう蝕が成立する。平 滑面より咬合面にてこのような深い侵襲が多く認められる要因は, 深い裂溝のため長時間にわたってプ

<u>第1ステップ</u>:エナメル質にて表層下脱灰病変の形成。<u>第2ステップ</u>:この病変が象牙質に向かってさらに進行する過程。pH が低下すると、アパタイト結晶が溶けて、エナメル質に隙間ができる。pH が回復すると、元のエナメル質結晶(●)より溶けにくい結晶がその隙間の一部に沈着する(再石灰化)。<u>第3ステッ</u> プ:その結果、この隙間のできた脱灰層は、もはやプラークで産生された酸では溶けないエナメル質結晶 (●)に変質される。そのためこの隙間は、酸が通過する通路(↓)として機能する。従ってプラークで産 生された酸は、この変質エナメル質を溶かすことなくこの通路を通過して、象牙質に達する。<u>第4ステッ</u> プ:象牙質はエナメル質と比べて遥かに溶けやすいので、象牙質は容易に脱灰され、隠れう蝕に至る。

ラーク pH が低く持続するからであろう。

本章では、ヒト歯にて隠れう蝕が観察されることを述べた。筆者らは、以前、フッ化物のう蝕予防効果 をハムスターにて評価したとき、ハムスターの歯でも「隠れう蝕と思われる」TMR 画像と実態画像を得 た(図3:未公開資料)。ハムスターの歯はヒトの歯の構造と比較的類似しており、臼歯咬合面はエナメル 質ですべて覆われている。筆者らは、高濃度の砂糖(Diet 2000)を含むエサを1週間ほど与え、軽度のう 蝕を惹起させた。その後、患歯を取り出し、樹脂で包埋して切片を作製し、TMR 画像と実態画像を得た。 その結果,TMR 画像ではエナメル質に欠損(う窩)や脱灰の兆候は観察されなかったが,その直下の象牙 質に強く脱灰されたエリアとその下部に弱く脱灰されたエリアが認められた(図3の右にて赤線で示す)。

この切片を染色剤 (ムレキサイド:カルシウムに対して 強く結合する傾向) にて染色した後,透過型の実態顕微 鏡で観察したところ, TMR 画像で脱灰が認められるエ リアに対応して,黒い帯状のエリアが観察された(図3 の左にて赤線で示す)。またそのエリアの下部にわずか に染色された褐色が見られた。

ハムスターの歯のエナメル質の厚さはヒトと比べる と非常に薄い(この例では,恐らく0.1~0.2 mm)。また そのエナメル質の密度もヒトと比べて低いと予想され る。これらのことを勘案すると,酸によるエナメル質を

図 3 ハムスターの歯で認められた隠れう蝕右:TMR 画像 左:実態画像

溶解する速度と比べて,象牙質に至る酸の拡散速度が十分に速く,そのため象牙質が優先的に脱灰され て「隠れう蝕と思われる」病変の形成に至ったのではないかと想像される。あるいはこの病変は隠れう蝕 ではなく,ヒトエナメル質で見られる表層下脱灰と考えるべきかも知れない。つまりこの場合のエナメル 質層は、ヒトエナメル質での表層下脱灰表層の病変における"表層"とも考えられる。このような脱灰現象 には、エナメル質を介した酸の拡散速度と歯質(エナメル質または象牙質)の溶解速度および溶解したミ ネラルイオンの外部への拡散と再沈着いう4つのプロセスが、微妙なバランスを取って関与していると 推察される。それにしても、脱灰現象は不思議なものである。

上記の解説で分かるように、フッ化物が隠れう蝕の原因の 1 つになっていると疑われる。そこで Weerheijm らは、オランダにて水道水がフッ素化された地域(1.1 ppm)とそうでない地域で、15歳の住民 を対象に hidden caries が観察される割合を調査した¹⁰⁾。その結果、水道水がフッ素化された地域でエナメ ル質に初期う蝕が認められた住民の 16.9%に、またフッ素化されていない地域では 24.6%に隠れう蝕が 認められた。この調査からは、フッ化物が隠れう蝕の発症の要因の 1 つとは言えないとの結論であった。 同様な調査結果がブラジルでも報告されている¹¹⁾。しかしこれらの結果は、フッ化物が隠れう蝕も含め てう蝕の進行を抑制したに過ぎないとも解釈される(筆者の考え)。従ってフッ化物の利用が隠れう蝕を 引き起こしやすいかどうかは、実験室実験にて詳細な検討が必要であろう。

最後に、隠れう蝕の再石灰化の可能性について私見を述べてみたい。基本的に再石灰化が期待できる条件として、脱灰によって小さくなったアパタイト核が十分残っていること(明瞭な隠れう蝕ではこのような結晶核がほとんど消失)、そしてアパタイト核が大きくなる(再石灰化する)ため唾液からのミネラルイオンの供給が十分であること(すなわち脱灰より再石灰化が優位な環境であること)が必要である。このことを前提に推察すると、隠れう蝕の場合、再石灰化の進行に対して、悪条件が多数考えられる。①病変の深層部にも細菌類^{12,13)}や酸のもとになる発酵性糖類の侵入が考えられ、従来のようなプラークコントロール(特にブラッシングによるバイオフィルムの除去)はできない。また石灰化を強く抑制する唾液タンパク質¹⁴⁾の侵入も予想される。そのようなことから、再石灰化より脱灰が優位となる。②病変が深いため、唾液の恩恵(酸中和作用や再石灰化作用)があまり期待できない。③あまりにアパタイト結晶が多く失われているため、たとえフッ化物で再石灰化が起こったとしても、病変の改善を期待するには長期間を要し、介入手段として現実的ではない。この間に、むしろ進行のリスクを伴う恐れがある。従って隠

れう蝕の再石灰化には、これらの困難を克服する新しいアプローチの研究開発が必要となる。筆者は、歯 の漂白に用いる過酸化水素剤や次亜塩素酸ナトリウムで前処置することで、隠れう蝕の内部に存在する 細菌や唾液タンパク質などの夾雑物を分解・除去して再石灰化しやすい環境に戻し、その上でミネラルイ オンとフッ化物を高濃度で供給することに1つの可能性を考えている。

4) 隠れう蝕の形成を人工的に試みた実験:

筆者らは、隠れう蝕の形成現象やメカニズムについて、少しでも理解を深めたいと考え、インビトロでの脱灰実験を行った。牛エナメル質をかなり深く研磨して本来のエナメル質の厚さより薄い試料を作製した(約 500 μm)。この試料を、異なった濃度のミネラルイオンとFおよび pH に調製した幾つかの脱

灰液に数週間ほど浸漬し、その後、TMR 画像
を得た。試した脱灰液の多くで、「隠れう蝕
のような」画像は得られなかったが、ミネラ
ルイオン濃度が比較的高く、Fが含まれてい
る場合に「隠れう蝕のような」画像が得られ
た。図4(未公開資料)の左側には、表層下
脱灰の病変の下の象牙質にEDJに沿って脱
灰が認められる(赤線の枠)。

図4人工的に作成した隠れう蝕

エナメル質の厚さが、より薄い赤枠の左側において象牙質の脱灰がより明瞭に認められる。図4の右側 には、う窩となってしまった試料でも、窩底部に薄いエナメル質の層を残し、象牙質に明瞭な脱灰が認め られる。これはう窩を呈していることから、隠れう蝕ではないが、エナメル質を介して象牙質が脱灰され る現象(上記のハムスターでの実験結果)としては、両者の試料で共通している。

これらの結果から,エナメル質層(全層または一部)を残して象牙質へ侵襲が展開する現象は,酸の拡 散に伴うエナメル質の脱灰と二次的な石灰化沈着(FAや DCPD の沈着)が密接に絡んでいることが推察 される。上述したように,隠れう蝕が再石灰化するかどうか,これらの試料を用いて検討することで何ら かの知見が得られるのではないかと期待される。

次いで筆者らは、図5に示したように象牙質にまで脱灰が進行した「小窩裂溝をモデルとした試料」を 作製して,隠れう蝕の進行の様子を観察しようと試みた(未公開資料)。歯質にあらかじめ象牙質に至る 約200 μm 幅のスリットを施し、2つの異なる脱灰液(表層下脱灰が形成されることをあらかじめ確認し た組成)にて脱灰した(1つはF無添加,もう1つは0.5 ppm 添加)。脱灰後,その切片(約120 μm)を作 製して TMR 画像を得た。その結果、Fを含まない場合、エナメル質表層にて不明瞭な表層下脱灰が見られ た。しかしスリットの入り口付近では脱灰が認められるが、EDJ付近のエナメル質では、あまり脱灰が進 行していないように見える。一方で象牙質では、左右に明らかに脱灰された様子が認められる。このよう な複雑な様子を呈した理由を以下に推察した。この場合、前述したようにエナメル質では表層下脱灰が形 成されることになる。一方、スリットの内部では、エナメル質と比べて象牙質に関しては高い不飽和度の ため、象牙質が優先的に溶解される。

その結果、ここに進入した脱灰液ではミネラルイオン濃度とpHが上昇して不飽和度が緩和されるため、 スリットに沿ったエナメル質では脱灰が抑制される。ではなぜ、表層下脱灰を呈さなかったか。恐らくpH が 5.0 以上となり、DCPDの形成が不十分であったと思われる(第 11 章の DCPD 説を参照)。こうして溶 解したミネラルイオ ンは,濃度勾配に従っ て外部の脱灰液に拡 散する。

このような状態が 長く続くことで,象牙 質が優先的に脱灰さ れ侵襲が深部と横方 向にも進むと予想さ れる。上述したように, あたかも象牙質が犠 牲にの脱灰が進行しな いようにも見える。

0.1 M 乳酸, 1.0 mM CaCl₂ 3.0 mM リン酸 K; pH4.3; 1週間の脱灰

0.1 M 乳酸, 1.0 mM CaCl₂, 3.0 mM リン酸 K; pH4.8, F:0.5 ppm; 3.5 日の脱灰

図 5 象牙質に至る隠れう蝕が形成されるモデル実験(小窩裂溝を想定) (仮説:象牙質が犠牲になって,エナメル質の脱灰の進行が抑制される)

それに対しFが含まれる脱灰液の場合(図の右),表層部のエナメル質は,エナメル質に関しては不飽 和であるが,FAに関して過飽和の脱灰液に接しているので,エナメル質の溶解とFAの沈着が起きる。そ の結果,明瞭な表層下脱灰が認められる¹⁵⁾。同様にスリットに沿ったエナメル質でも表層下脱灰が形成 される。一方,スリットの内部に侵入した脱灰液は,象牙質を溶解する。その結果,ミネラルイオン濃度 とpHが上昇して不飽和度が緩和される。それと同時に,FAに関して元々過飽和であった液性が更に高い 過飽和となり,溶解性の高い象牙質でも,微弱ながらも表層(再石灰化層)が形成される。同時に,溶解 したミネラルイオンは濃度勾配に従って,外部の脱灰液に拡散する。Fが含まれていない場合と同様,こ のような状態が続くことで象牙質のみが優先的に脱灰され,侵襲が深部と横方向にも進むと予想される。

第16章:象牙質における過石灰化現象(インビトロでの結果)

筆者らは、脱灰象牙質を APF などの高濃度フッ化物などで塗布した後(以降, F 塗布), これを一定期 間, 再石灰化液(人工唾液)に浸漬すると、脱灰の底部に本来よりも高いミネラル密度の層(過石灰化層) が形成されることを見出した^{1,2)}。しかしこの過石灰化現象(hyper-mineralization)は、健全象牙質を次亜 塩素酸ナトリウム(NaClO)で前処置し、フッ化物の関与がなくとも、同様に再石灰化液に浸漬すること でも形成されることを見出された¹⁾。本章では、このような不思議な現象について筆者らが行った2つの 研究例を紹介する。なおエナメル質において、このような過石灰化現象は、筆者の知る限り、報告されて いない。

1) 脱灰象牙質をF塗布した後の過石灰化現象

牛の歯根部の象牙質試料を1週間脱灰し、これを4群(①baseline 群;脱灰のみ ②2%NaF塗布 ③APF 塗布剤(2%NaF含有) ④塗布剤なし)に分け、①群を除いて、30分間のF塗布を行い、水洗と洗浄後、こ れら試料を再石灰化液に浸漬した。2および4週間後、これら4群の試料の切片を作製してTMR法にて 脱灰病変の画像を取得し、また病変におけるミネラル密度を解析した。その結果を図1に示した。作製し た病変は、約500 μmの深さのう富状であった(図1の再石灰化前の baseline 群)。2週間の再石灰化後、 APF 群と NaF 群では、う富病変の底部に沿って白い層が認められた。一方、F 塗布しない群では、そのよ うな層は認められなかった。

このことから、この過石灰化 層には FA が形成・沈着したと 考えられる。さらに4週間後、こ の白い層は、より明瞭に確認さ れた。なお TMR 画像では、周り の輝度(白黒度)より明るいこ とは、そこでのミネラル密度が 高いことを意味する。図1では APF の場合より NaF の場合の方 が、より鮮明に過石灰化層が認 められた。

ミネラル密度の解析結果の1例を図2に示した。TMR 画像

の過石灰化層に対応して, 破線(本来の健全ミネラル 密度:約48 vol%)より上 に,ミネラル密度の高い領 域が確認された。このよう に過石灰化層が認められた 試料数は,再石灰化期間が 長くなると多くなる傾向に あった。表1には,各群10 試料のうち過石灰化層を示 した試料数(表中のマーク

「ø」)および過石灰化層で

のパラメータ(最 大ミネラル密度 ΦMax: vol%, 過石 灰化層の領域面積 ΦZ: vol%·μm, 過 石灰化層の厚さ ΦT:μm)を示し た。これらの値 も, 再石灰化期間

図1 再石灰化後の TMR 画像

図 2 過石灰化層を有する試料(a)の TMR 画像とそのミネラル密度の分布 (b);
 (a) 星印☆で示した層が過石灰化層
 (b) 破線は本来の健全ミネラル密度(48 vol%); 破線とミネラル密度を表す赤色曲線で囲まれた領域が過石灰化領域(ΦZ); 過石灰化領域での最大ミネラル密度:ΦMax, 過石灰化層の厚さ:ΦT

表1 過石灰化層でのパラメータ(最大密度、領域面積、厚さ)の平均値と SD およびその範囲

Group	ΦMax: vol%		ΦΖ: vol%·µm		ΦΤ: μm	
	2-week	4-week	2-week	4-week	2-week	4-week
APF	51 ± 1 $3/10^{6}$	55 ± 3 9/10 °	369 ± 134 $3/10^{\circ}$	1620 ± 759 9/10 ^ø	183 ± 40 3/10 ^ø	231 ± 30 9/10 ^ø
	(50 - 52)	(52 - 59)	(225 - 491)	(706 - 3068)	(113 - 193)	(179 - 274)
NaF	53 ± 5	57 ± 3	745 ± 871	1115 ± 502	196 ± 111	275 ± 52
	2/10 %	8/10 ^ø	2/10 ^ø	8/10 ^ø	2/10 %	8/10 ^ø
	(49 - 59)	(53 - 61)	(73 - 1926)	(404 - 1944)	(64 - 316)	(205 - 344)

が長くなると増大する傾向にあった。特に最大ミネラル密度に関しては, NaF 群で平均 57 vol%, 個別試料では最大 61 vol%であった。象牙質の健全ミネラル密度は 48% であるので, 平均で 9 vol%の増加であった。

健全象牙質は、体積比率で約50 vol%のミネラル分(無機分)、約30 vol%のコラーゲン(有機質分)、 そして約20 vol%の水分から構成されている。はたしてこの過石灰化現象は、象牙質のどこで起きたので あろうか。2つの可能性が考えられる。上記の水分が占める空隙部分あるいは象牙細管の壁面か管内で ある。筆者らは過石灰化層を電顕にて注意深く観察したが、象牙細管の壁面および管内では、新たに沈 着したと思われる石灰化物は観察されなかった。従って過石灰化現象で増加したミネラル密度は、元々 の象牙質のアパタイト結晶性が、水分の占める空隙において大きくなった体積量である推察された。し かしこの増大を SEM にて確認することはできなかった。

F 塗布することで, 脱灰底部の健全部位で過石灰化層が形成されたことは, インビトロとはいえ, 筆者の知る限り, はじめてのことである。今回は1回の塗布であったが, 臨床的には年に数回塗布することから, 臨床的にも形成される可能性があると思われる。*in-situ* 実験にて確認する必要がある。

しばしば進行性(active)の初期根面う蝕にF塗布を施すと,停止性(arrested)に改善される(恐らく 再石灰化反応を伴う硬さの回復)ことが知られている³⁻⁷⁾。筆者は,この過石灰化層の形成が停止性をも たらす要因ではないかと考えている。フッ化物の中でも,特にフッ化ジアミン銀(Silver Diammine Fluoride: SDF;商品名サホライド)は,停止性効果が高い^{3,4)}。その理由は,SDFに含まれているF濃度が他のF塗 布剤(9,048 ppm)と比べて,格段に高い(44,880 ppm)ことによると思われる。SDFに含まれる銀(Ag⁺) には抗菌・抗酵素作用があり,この作用が細菌による酸産生を抑制し,脱灰歯質を再石灰化しやすくする と思われる。今回の検討の発展として,過石灰化層の形成に及ぼす SDFの影響,あるいはそれ以外のF塗

布剤の塗布回数の影響や再石灰化期間あるいは,その 後の耐酸性への影響などを検討する必要がある。

さて象牙質における過石灰化現象については,イン ビトロ研究にて過去,幾つかの研究報告が見られる⁸⁻ ¹²⁾。また実際の根面う蝕の病理所見として,過石灰化現 象を認めたとする報告も見られる^{13,14)}。これらの報告で は,過石灰化層は病変(脱灰部位)の表面あるいは表層 で形成されたとの知見であり,今回のように病変の下 部の健全部にて確認されたとする知見は,筆者らが知 る限り,始めてである。

図 3 10 ppm F の存在下で再石灰化された脱灰病変の表 面あるいは表層に形成された過石灰化層のミネラル密 度分布.注) DR: もとの過石灰化病変の密度の分布, DRD1 から DRD3: 1 週間, 2 週間および 3 週間脱灰後 のミネラル密度分布

この過石灰化層での最大ミネラル密度は、約77 vol%であった。またその過石灰化層が、F として 30,000 ppmの高濃度の石灰化物で構成されていることも見出した。この値は、純粋なフルオロアパタイトに含まれるF濃度(38,000 ppm)に匹敵することから、彼らはこの過石灰化層はFAで構成されていると推察した。その後、この過石灰化層の耐酸性を調べる目的で、この試料を3週間に渡って pH5の脱灰液にて脱灰した。その結果、脱灰後においても表層のF濃度や最大ミネラル密度に大きな変動はなく、脱灰病変の全体においてもミネラルの溶解や脱灰深さの変化はなかった(図3)。このような高い耐酸性は、形成されたFAによること、さらには仮にFAが溶けたとしても、高い濃度のFがFAから供給されてFAが再沈着することによると考えられる。ただし臨床的にはF歯磨剤や洗口剤では、10 ppmもの高いF濃度を8日

間もの長期間にわたって維持することは困難であるが、Fバーニッシュを用いれば高濃度のFを維持でき、 このような過石灰化現象が起きるかも知れない。

筆者らは、彼らとは異なり、1.0 ppm という比較的低濃度の Fを 含む再石灰化液に脱灰象牙質を 2 週間浸漬したところ、もともと の象牙質表面と同じレベルに過石灰化層の形成を確認した(図 4: 未発表)。このときの最大ミネラル密度は、約 53%であった。しか しこの図で見られるように、顕著な過石灰化現象にもかかわらず、 表層の下部の病変内部では目立ったミネラル沈着(再石灰化)は 見られなかった。lijima らと筆者の検討から、過石灰化現象が象牙 質の表面で起きるか、それとも図 4 のような病変の表層で起きる かは、どうも再石灰化液に含まれるF濃度に依存すると思われる。

それでは,図2 で見られるような過石灰化現象が起きるメカニ ズムについて筆者らの仮説を解説したい。今回の実験条件には, ①脱灰,②それに続くF塗布,そして③再石灰化処置の3つが含 まれる。このうち①脱灰は,過石灰化現象には必須と思われた。そ

こで非脱灰試料に F 塗布とそれに続く再石灰化処置を行った結果,象牙質内層には過石灰化層は全く形成されず,象牙質表面に石灰化層の沈着・形成を認めた(図 5)。最大ミネラル密度は約 60 vol%で,その幅は約 20 μm であった。

次いで筆者らは,象牙質に含まれる石灰化に関与する2 つの成分に着目した。第1は,象牙質に含まれるマグネシ ウム (Mg) である¹⁵⁾。どのような役割を演じているか,筆 者は詳細には理解していないが,Mg は象牙質の形成段階 から含まれ,酵素活性に関与しているかも知れない。Tefft らは象牙質には約 1%の Mg が含まれていると報告した ¹⁵⁾。一方インビトロの検討にて,Mg²⁺は HA の結晶表面に 強く吸着して,結晶成長を抑制する作用が知られている ¹⁶⁻¹⁹⁾。

筆者らは, 脱灰によってう窩底部の健全層のアパタイトの結晶表面からMgの一部が溶解されて取り除かれ, 本

図 5 象牙質表面に沈着したミネラル層(上)と その TMR 解析による密度の分布(下)

来の象牙質アパタイトの結晶サイズの成長(増大)が許されたのではないかと推察した。そこで, EDS (Energy Dispersive x-ray Spectroscopy: エネルギー分散型 X 線分光器)を用いて,過石灰化層およびその 下層部(過石灰化の影響を受けていない深部の健全部)の Mg 濃度を計測した。その結果,健全部と比べ て過石灰化層では Mg 濃度が低かった。

それでは、このう窩底部の健全層において脱灰による何らかの影響があるのであろうか。筆者らは、 もう1度、TMR 画像と切片の光学画像を注意深く観察した。その結果、TMR 画像においてう窩の底部 に非常にわずかであるが、ミネラル密度の低い領域(図 6a の☆)、また光学画像においても対応する領

図4表層での過石灰化層の形成

域にやや明るい領域が認められた(図 6b のx)。通常,この領域は脱灰の影響を受けていないとして考察の対象とされていない。しかし今回,この領域で過石灰化層が形成されたことから,この領域で何らかの化学的変化が起きたと推察される。上述したように,この領域では少なくとも Mg 濃度の低下が認められた。

第2の成分は、リン酸基を有するタンパク質(dentin-phospho-protein: DPP)である²⁰。DPP は、これま で述べてきた唾液リン・タンパク質(Statherin や PRPs)あるいはカゼインの分子構造で見られるエステル ・リン酸基を有する分子である。筆者は、DPP についてもその役割については、詳細には理解していない。 しかしリン・タンパク質であることから、アパタイト結晶の表面に吸着して、その成長を抑制することが 予想される。一方で、DPP のリン酸基に Ca²⁺が結合し、これがアパタイトの擬似的な核となって、HA 結晶 が形成される契機となることも指摘されている。すなわち DPP は、象牙質の形成期における石灰化の制 御に関与していると考えられている²¹⁻²⁰。

Klont らは,象牙質を酸脱灰し,これを中性の 液体に浸漬するとDPPが溶出されると報告して いる²⁷⁾。今回の筆者らの検討では,酸脱灰の後, pH 中性の人工唾液に浸漬したことから,DPP が 溶け出した可能性がある。その結果,脱灰病変 の底部の健全領域で過石灰化現象が起きたと考 えられる。残念ながら,筆者らは当時,DPP を 非破壊で定量的に検出する試験法を持ち合わせ ていなかったので,この仮説の検証はできなか った。今後の研究で確認する必要がある。

図 6 脱灰直後(再石灰化前)の TMR 画像(a)とその光学 顕微鏡画像(b). a:う窩の底部の下部に弱く脱灰され た領域を認める(☆). b:光学画像でもう窩底部の下 部に,少し明るい領域が広がっている(本).

仮に Mg および DPP の除去が過石灰化現象を引き起こす要因と仮定した場合,はたしてこれらの2成 分は,象牙質ミネラルとどのようなかたちで関連し合っているのか。この疑問が解明されない限り,これ ら成分の除去が過石灰化現象にとって必須とは断定できない。従って,これら以外の成分の可能性も排除 できない。

2) 健全象牙質を NaClO で前処理した後の過石灰化現象

本章の冒頭で述べたように、非脱灰(健全)象牙質においても、下記に示す一定の条件下で過石灰化現 象が認められた。まず健全象牙質を、上述の DPP を分解除去する目的で 6% NaClO の溶液に1時間浸漬 した。次いで NaClO を完全に除くため、約1時間水道水に浸漬し撹拌した。最後に蒸留水にて十分洗浄 した。NaClO 処理した象牙質試料を2つのグループに分け、一方はF塗布し、もう一方はF塗布を行わ ず、人工唾液に4週間浸漬した。その後、象牙質試料から切片を作製して TMR 画像を得た。その結果、意 外にもF塗布群では、象牙質内層での過石灰化現象は認められず、図5で示したような、象牙質表面に高 いミネラル密度の層の形成を認めた。それに対し非F塗布群では、図7に示したように、象牙質内層で過 石灰化現象を認めた。その最大ミネラル密度は約60 vol%で、その層の厚さは約60 µm であった。

なぜこのような予想と逆の結果であったか。以下のように推察された。F 塗布群では,象牙質表面にて FA 様の結晶が多量に形成・沈着され,象牙細管や内層に至る空隙が完全に封鎖さて,過石灰化に必要な ミネラルイオンや F の浸透が抑制されたと考えられる。筆者らは,脱灰象牙質ではないが,エナメル質の 表層下脱灰病変の再石灰化実験にて同様な現象を観察 した(第14章 図8参照)²⁸⁾。

一方非 F 塗布群では, そのような象牙質表面での FA 様の結晶の沈着が起きず, 象牙細管や内層に至る空隙 が封鎖されることがなかったこと, また NaClO 処理に より, 石灰化を抑制する DPP が除去され, 象牙質アパ タイトの結晶成長が許されたのではないかと考えられ る。

Sakae らは, NaClO 処理により, 象牙質から Mg をは じめ炭酸 (HCO₃, CO₃) や有機物が除去されると報告し ている²⁹⁾。従って今回は, NaClO 処理により Mg と DPP の両方が除去された可能性がある。

今回, F 塗布群にて象牙質内層で過石灰化層が形成さ れず,象牙質表面に高いミネラル密度の層が形成され た。この知見について,筆者らは以下のような追加の検 討を行った(未公表)。NaClO処理した象牙質を,同様

図7象牙質表面に沈着したミネラル層(上)と そのTMR解析による密度の分布(下)

に F 塗布し, これを 100 ppm のカゼインを含む人工唾液 ^{30,31)}に 4 週間浸漬し, TMR 解析のため切片を作 製した。その結果, TMR 画像にて, 図 5 のような表面での石灰化沈着層の形成は認められず, 図 7 で示し たような象牙質内層において明瞭な過石灰化層の形成が認められた。この結果は, 第 14 章で述べたカゼ インによる石灰化および再石灰化の制御メカニズムと同じメカニズムによると考えられる ^{30,31)}。

NaClO は、根管治療の洗浄剤として使用されている。これにより、細菌やコラーゲンなどのタンパク質 などが分解除去される。NaClO は強い酸化剤であるとともに強いアルカリ性でもあるので、この処理に よって象牙質に含まれる無機質(アパタイト,Mgや炭酸などの不純物)や有機質(コラーゲン,DPP など の非コラーゲン性タンパク質)がどのような影響を受けるか、その全容を知ることは難しい。

NaClO のタンパク質分解作用に関連して, Inaba らはインビト ロにて脱灰象牙質を NaClO 処理することで,再石灰化が進行し やすくなった報告した¹¹⁾。彼らは,脱灰象牙質を異なった濃度の NaClO (0.4, 2.0, 10%) で2分間処置し,その後,再石灰化液 (F として 10 ppm を含む場合と含まない場合) に8日間浸漬した。 その結果の1部を図8 (NaClO が 10%の場合) に紹介する。この 図8 に描かれているミネラル・プロファイルについて,A は脱灰 直後(脱灰のみ),B は脱灰後の NaClO 処理のみ,C は B の試料 をFなしで再石灰化した後,そしてD は B の試料を10 ppm F存在 下で再石灰化したものである。B においてミネラル密度が高くなって いるのは,脱灰により露出したコラーゲンが分解除去され,脱灰病変 の全体が収縮して,見かけミネラル密度が高くなったことによる。C と

▲ 8 脱灰象牙貨をNaCIO で処理した場合の,その後の再石灰化に及ぼす影響.
 A: 脱灰のみ. B: NaCIO 処理のみ C: Fなしでの再石灰化後 D: 10 ppm F存在下での再石灰化後

Dを比較すると、Cでは若干ながら過石灰化現象が起きている様子が見られる。また、病変内部まで再石灰化が進行した様子も見て取れる。それに対し D では、病変の表層または表面で顕著な過石灰化層が形成されたが、

病変の内部までは再石灰化が進行していない。なお D のミネラル・プロファイルの基準点[depth の 0 μm の位 地]は、元々の試料表面ではないことに留意が必要である。これは、これまで述べてきたように、過石灰化層に よって病変の内部に拡散するミネラルイオンの拡散が制限されたことによると考えられる。

以上のようなことから、象牙質にはエナメル質では認められない過石灰化現象という不思議な現象が 確認された。その現象に関与する要因として、石灰化に関与する Mg や DPP が推察された。根面う蝕の 予防や再石灰化の促進手段として、健全象牙質に NaClO を臨床的に使用することは、歯肉への影響が懸 念されるため困難を伴う。筆者は、APF の使用することで過石灰化現象が起きないか、その可能性を感じ る。インビトロでは、APF はこれまで脱灰抑制に着目して評価されてきた。APF は酸性のため、塗布を繰 り返すことにより、あるいは長期間の滞留が可能な酸性の F バーニッシュの塗布により、上述の Mg の溶 解が起きると予想される。それにより、表層で過石灰化層が形成されないであろうか。今後は、この過石 灰化現象を臨床的に応用できなか、読者の研究に期待したい。

文献

第1章:歯質アパタイトとそのモデル物質であるハイドロキシアパタイトの化学的特性

- IADR 1992 (Boston) Abstract #824. Dentin and enamel demineralization in vitro under equivalent driving force. Margolis HC, Moreno EC, Maguire C.
- 2) Prog Biomater. 2016; 5: 9-70. Calcium orthophosphates (CaPO₄): occurrence and properties. Dorozhkin SV.
- 3) Adv Dent Res. 1994; 8: 125-33. In situ models, physico-chemical aspects. ten Cate JM.

第2章:歯質アパタイト(HA)の酸溶解のメカニズム

- 1) Odontology. 2013; 101: 2-8. The Stephan Curve revisited. Bowen WH.
- IADR 1992 (Boston) Abstract #824. Dentin and enamel demineralization in vitro under equivalent driving force. Margolis HC, Moreno EC, Maguire C.
- Arch Oral Biol. 2009; 54: 810-6. Evaluation of the remineralizing capacities of modified saliva substitutes in vitro. Tschoppe P, Kielbassa AM, Meyer-Lueckel H.
- 4) Calcif Tissue Int. 1985; 37: 91-4. Octacalcium phosphate formation in vitro: implications for bone formation. Cheng PT.
- 5) Calcif Tissue Int. 1987; 40: 339-43. Formation of octacalcium phosphate and subsequent transformation to hydroxyapatite at low supersaturation: a model for cartilage calcification. Cheng PT.

第3章: HAにおける飽和度の意味すること

 Arch Oral Biol. 1985; 30: 37-42. Effect of time, degree of saturation, pH and acid concentration of buffer solutions on the rate of in-vitro demineralization of human enamel. Theuns HM, van Dijk JW, Driessens FC, Groeneveld A.

- J Dent Res. 1985; 64: 786-92. Importance of high pKA acids in cariogenic potential of plaque. Margolis HC, Moreno EC, Murphy BJ.
- 3) J Dent Res. 1991; 70: 1332-7. Scanning and contact microradiographic study of the effect of degree of saturation on the rate of enamel demineralization. Gao XJ, Elliott JC, Anderson P.
- 4) J Dent Res. 1999; 78: 1326-35. Kinetics of enamel demineralization in vitro. Margolis HC, Zhang YP, Lee CY, Kent RL Jr, Moreno EC.
- 5) Eur J Oral Sci. 2000; 108: 207-13. Enamel demineralization under driving forces found in dental plaque fluid. Zhang YP, Kent RL Jr, Margolis HC.
- 6)日本歯科保存学雑誌, 2014, 57; 111-120. 総説 エナメル質臨界 pH についての理論的考察 -なぜ, pH5.3 付 近なのか- 中嶋省志, SADR Alireza, 田上順次.
- 7) Arch Oral Biol. 1973; 18: 1385-92. Saturation of human saliva with calcium phosphates. Gron P.

第4章:HAに関する飽和度の定義と例

- 1) Monogr Oral Sci. 2001,18: 94-111, Solubility of calcium phosphates, Chow LC. Octacalcium Phosphate, Chow LC, Eanes ED (eds) Basel. Karger.
- Octacalcium Phosphate. Monogr Oral Sci Basel. Karger 2001. 18, 94-111. Solubility of Calcium Phosphate (LC. Chow).
- 3) J Dent Res 1975; 54: 728-736. Thermodynamic solubility product of human tooth enamel: powdered sample. Patel PR, Brown WE.
- IADR 1992 (Boston) Abstract #824. Dentin and enamel demineralization in vitro under equivalent driving force. Margolis HC, Moreno EC, Maguire C.
- 5) Stability constant of metal ion complexes. Suppl. 1, Special Publ., No 25 (Chemical Society, London 1971), ed Sillen LG and Martell AE. Metcalfe and Cooper Ltd (London).
- 6) Calcif Tissue Int. 1979; 24: 28: 7-16. Effect of human salivary proteins on the precipitation kinetics of calcium phosphate. Moreno EC, Varughese K, Hay DI.
- 7) Calcif Tissue Int. 1982; 34 Suppl 2: S33-40. Effect of fluoride on crystal growth of calcium apatites in the presence of a salivary inhibitor. Margolis HC, Varughese K, Moreno EC.
- Biochem J. 1983; 1: 213: 11-20. Interaction of calcium ions and salivary acidic proline-rich proteins with hydroxyapatite. A possible aspect of inhibition of hydroxyapatite formation. Bennick A, Kells D, Madapallimattam G.
- 9) J Dent Res. 1984; 63: 857-63. Relationship between concentration of human salivary Statherin and inhibition of calcium phosphate precipitation in stimulated human parotid saliva. Hay DI, Smith DJ, Schluckebier SK, Moreno EC.
- 10) J Clin Dent. 1997; 8 (2 Spec No): 62-6. The comparative clinical efficacy of pyrophosphate/triclosan, copolymer/triclosan and zinc citrate/triclosan dentifrices for the reduction of supragingival calculus formation. Fairbrother KJ, Kowolik MJ, Curzon ME, Müller I, McKeown S, Hill CM, Hannigan C, Bartizek RD, White DJ.
- J Clin Dent. 1998; 9: 101-4. Clinical comparison of two tartar control dentifrices: a twelve-week study. Sowinski J, Petrone DM, Battista G, Petrone ME, DeVizio W, Volpe AR.

- 12) J Clin Dent. 1998; 9: 26-9. Safety and efficacy of a novel tartar control dentifrice containing 3.3%
 pyrophosphate: a controlled six-month clinical trial. Segreto VA, Stevens DP, Schulte MC, Fortna RH, Gerlach RW.
- 13) J Clin Dent. 2000; 11: 68-71. A calculus clinical study comparing the efficacy of two commercially available dentifrices. Sowinski J, Battista G, Petrone DM, Petrone ME, DeVizio W, Volpe AR, Proskin HM.
- 14) J Clin Dent. 2000; 11: 72-5. A clinical comparison of two calculus-inhibiting dentifrices.Conforti N, Berta R, Petrone ME, DeVizio W, Volpe AR, Proskin HM.
- 15) J Dent Res. 1988; 67: 1468-75. Composition of pooled resting plaque fluid from caries-free and cariessusceptible individuals. Margolis HC, Duckworth JH, Moreno EC.
- 16) Community Dent Oral Epidemiol 2005; 33: 349-56. Evidence for putting the calculus: caries inverse relationship to work. Duckworth RM, Huntington E.

第5章:HAに関する飽和度の計算法

- J Dent Res. 1988; 67: 1181-9. Composition of human plaque fluid. Moreno EC, Margolis HC. Erratum in J Dent Res 1988; 67: inside back cov.
- 口腔衛生学会雑誌. 1991; 41: 596-606. ヒトエナメル質脱灰におよぼす乳酸緩衝液の飽和度および溶存 フッ素濃度の影響について: Single thin section 法による研究. 中嶋省志, Moreno EC.
- 3) Wikipedia; Debye–Hückel theory
- 4) Wikipedia; ion strength

第6章:脱灰液中のミネラルイオン濃度が脱灰に及ぼす影響

- J Dent Res. 1999; 78: 1326-35. Kinetics of enamel demineralization in vitro. Margolis HC, Zhang YP, Lee CY, Kent RL Jr, Moreno EC.
- ザ・クインテセンス 2013. 32. Hidden Caries を考える. う蝕窩洞発症以前に介入することは可能なのか? PART 1: Hidden Caries を知る. 中嶋省志.
- 3) Dent Update. 1997. 24: 182-184. Occlusal 'hidden caries'. Weerheijm KL.
- Int Dent J. 1997. 47: 259-265. Hidden caries: what is it? Does it exist? Does it matter? Ricketts D, Kidd E, Weerheijm K, de Soet H.
- 5) Caries Res. 2006. 40: 38-42. The effect of adjacent dentine blocks on the demineralisation and remineralisation of enamel in vitro. Lynch RJ, Ten Cate JM.
- 6) Caries Res. 1997. 31: 30-34. The effect of fluoridation on the occurrence of hidden caries in clinically sound occlusal surfaces. Weerheijm KL, Kidd EA, Groen HJ.
- 7) Int J Paediatr Dent. 2013; 23: 72-6. Effect of the widespread use of fluorides on the occurrence of hidden caries in children. Hashizume LN, Mathias TC, Cibils DM, Maltz M.
- ASDC J Dent Child. 1990. 57: 428-432. Occlusal hidden caries: a bacteriological profile. Weerheijm KL, de Soet JJ, de Graaff J, van Amerongen WE.
- 9) Caries Res. 2007; 41: 26-33. Diet intake and caries prevalence in four-year-old children living in a lowprevalence country. Ohlund I, Holgerson PL, Backman B, Lind T, Hernell O, Johansson I.

- 10) Am J Dent. 1990; 3: 217-23. Effects of processed cheese on human plaque pH and demineralization and remineralization. Jensen ME, Wefel JS.
- Oral Health Prev Dent. 2018; 16: 169-174. Effect of Paneer and Cheese Consumption on Salivary Acidogenicity and Calcium Concentration: A Comparative Study. Somaraj V, Shenoy RP, Panchmal GS, Jodalli PS, Sonde L, Nagaraj K.
- 12) Aust Dent J. 1991; 36: 120-5. The effect of cheese on dental caries: a review of the literature. Herod EL.
- Nutr Rev. 2002; 60: 97-103. Cheese consumption and the development and progression of dental caries. Kashket S, DePaola DP.
- 14) J Dent Res. 2006; 85: 359-63. Enamel demineralization in primary and permanent teeth. Wang LJ, Tang R, Bonstein T, Bush P, Nancollas GH.
- 15) 日本歯科保存学雑誌. 2014; 57: 111-120. エナメル質臨界 pH についての理論的考察. -なぜ, pH5.3 付近 なのか-. 中嶋省志, SADR Alireza, 田上順次.
- Arch Oral Biol. 1987; 32: 319-22. The mineral solubility of human tooth roots. Hoppenbrouwers PM, Driessens FC, Borggreven JM.
- 17) J Dent Res. 1988; 67: 1181-9. Composition of human plaque fluid. Moreno EC, Margolis HC. Erratum in J Dent Res 1988; 67: inside back cov.
- 18) 日本口腔衛生学会 2007 年学術大会抄録(#23, p426). ヒト象牙質粉末を用いた酸溶解性の検討;象牙質の脱灰臨界 pHの推定の基礎的研究. 福田康, 松山和正, 中嶋省志, 氏家高志.

第7章: 脱灰液中のフッ化物イオン濃度が脱灰に及ぼす影響

- 1) Scand J Dent Res. 1991; 99: 372-7. Effect of fluoride mouthrinsing on caries lesion development in shark enamel: an in situ caries model study. Ogaard B, Rölla G, Dijkman T, Ruben J, Arends J.
- 2) Scand J Dent Res. 1988; 96: 209-11. Microradiographic study of demineralization of shark enamel in a human caries model. Ogaard B, Rölla G, Ruben J, Dijkman T, Arends J.
- J Dent Res. 1986; 65: 23-9. Effect of low levels of fluoride in solution on enamel demineralization in vitro. Margolis HC, Moreno EC, Murphy BJ.
- Caries Res. 1991; 25: 123-9. Oral fluoride retention after use of fluoride dentifrices. Duckworth RM, Morgan SN.
- 5) J Dent Res. 1992; 71 Spec No: 841-5. Fluoride availability in human saliva after dentifrice use: correlation with anticaries effects in rats. Afflitto J, Schmid R, Esposito A, Toddywala R, Gaffar A.
- 6) Acta Odontol Scand. 1997; 55: 84-7. Salivary fluoride concentration in adults after different fluoride procedures. Seppä L, Salmenkivi S, Hausen H.
- 7) Caries Res. 1991; 25: 287-91. Effect of mouthrinsing after toothbrushing with a fluoride dentifrice on human salivary fluoride levels. Duckworth RM, Knoop DT, Stephen KW.
- 日腔衛生学会雑誌. 1991; 41: 596-606. ヒトエナメル質脱灰におよぼす乳酸緩衝液の飽和度および溶存 フッ素濃度の影響について: Single thin section 法による研究. 中嶋省志, Moreno EC.
- Nature. 1974; 246: 64-65. Fluoridated hydroxyapatite solubility and caries formation. Moreno EC, Kresak M, Zahradinic R

- 10) Archives of Oral Biology, 2007; 52: 861-868. Solubility of calcium fluoride and fluorapatite by solid titration. Pan HB, Darvell BW.
- 11) Caries Res. 2000; 34: 388-94. In situ acid resistance of in vivo formed white spot lesions. Iijima Y, Takagi O.
- 12) Caries Res. 2004; 38: 551-6. Acid resistance of enamel subsurface lesions remineralized by a sugar-free chewing gum containing casein phosphopeptide-amorphous calcium phosphate. Iijima Y, Cai F, Shen P, Walker G, Reynolds C, Reynolds EC.
- 13) Aust Dent J. 2011; 56: 394-400. Remineralization and acid resistance of enamel lesions after chewing gum containing fluoride extracted from green tea. Suyama E, Tamura T, Ozawa T, Suzuki A, Iijima Y, Saito T.

第8章:プラークに取り込まれたフッ化物の効果と動態

- J Dent Res. 1992; 71: 1768-75. Fluoride concentrations in plaque, whole saliva, and ductal saliva after application of home-use topical fluorides [published erratum appears in J Dent Res 1993; 72: 87]. Zero DT, Raubertas RF, Fu J, Pedersen AM, Hayes AL, Featherstone JD.
- J Dent Res. 1988; 67: 1181-89. Composition of human plaque fluid. Moreno EC, Margolis HC. Erratum in J Dent Res 1988; 67: inside back cov.
- Crit Rev Oral Biol Med. 1994; 5: 1-25. Composition and cariogenic potential of dental plaque fluid. Margolis HC, Moreno EC.
- 4) J Dent Res. 1990; 69 No: 645-52; discussion 682-3. Fluoride in dental plaque and its effects. Tatevossian A.
- 5) Arch Oral Biol. 2002; 47: 779-90. Calcium phosphate deposition in human dental plaque microcosm biofilms induced by a ureolytic pH-rise procedure. Wong L, Sissons CH, Pearce EI, Cutress TW.
- 6) Caries Res. 2009; 43: 278-85. Mechanism of fluoride dentifrice effect on enamel demineralization. Tenuta LM, Zamataro CB, Del Bel Cury AA, Tabchoury CP, Cury JA.
- 7) J Dent Res. 1992; 71:448-52. In vivo fluoride concentrations measured for two hours after a NaF or a novel twosolution rinse. Vogel GL, Mao Y, Carey CM, Chow LC, Takagi S.
- 8) J Dent Res. 2015; 94: 602-7. Biofilm layers affect the treatment outcomes of NaF and Nano-hydroxyapatite. Zhang M, He LB, Exterkate RA, Cheng L, Li JY, Ten Cate JM, Crielaard W, Deng DM.
- 9) J Dent Res. 1995; 74: 1689-94. Lipoteichoic acid inhibits remineralization of artificial subsurface lesions and surface-softened enamel. Damen JJ, Exterkate RA, ten Cate JM.
- Scand J Dent Res. 1977; 85: 387-91. Adsorption of Streptococcus mutans lipoteichoic acid to hydroxyapatite. Ciardi JE, Rölla G, Bowen WH, Reilly JA.
- 11) Arch Oral Biol. 1994; 39: 753-7. Adsorption of [3H]-lipoteichoic acid to hydroxyapatite and its effect on crystal growth. Damen JJ, de Soet JJ, ten Cate JM.
- 12) 11) Arch Oral Biol. 1994; 39: 141-6. Inhibition of hydroxyapatite crystal growth by lipoteichoic acid. Damen JJ, ten Cate JM.
- 13) Caries Res. 2012; 46: 460-6. Effect of fluoridated milk on enamel and root dentin demineralization evaluated by a biofilm caries model. Giacaman RA, Muñoz MJ, Ccahuana-Vasquez RA, Muñoz-Sandoval C, Cury JA.
- 14) Caries Res. 1976; 10: 72-80. Effect of pH on the fluoride ion activity of plaque. Birkeland JM, Charlton G.

- 15) Arch Oral Biol. 1980; 25: 517-22. Ionized and bound fluoride in resting and fermenting dental plaque and individual human caries experience. Agus HM, Un PS, Cooper MH, Schamschula RG.
- 16) Arch Oral Biol. 1999; 44: 253-8. Release of mineral ions in dental plaque following acid production. Tanaka M, Margolis HC.
- 17) J Dent Res. 1992; 71: 1553-7. Distribution of fluoride in saliva and plaque fluid after a 0.048 mol/L NaF rinse.
 Vogel GL, Carey CM, Ekstrand J.
- Infect Immun. 1977; 18: 680-7. Fluoride uptake by Streptococcus mutans 6715. Whitford GM, Schuster GS, Pashley DH, Venkateswarlu P.
- 19) Scand J Dent Res. 1984; 92: 190-7. Fluoride retention in sound and demineralized enamel in vivo after treatment with a fluoride varnish (Duraphat). Ogaard B, Rölla G, Helgeland K.
- 20) J Dent. 2015; 43: 219-24. Dentifrice pH but not consistency may affect fluoride uptake in plaque. Cardoso CA, Levy FM, Peres-Buzalaf C, Buzalaf MA.
- 21) J Dent Res. 1980; 59: 1187-91. Uptake of fluoride by cells of Streptococcus mutans in dense suspensions. Eisenberg AD, Marquis RE.
- 22) Arch Oral Biol. 1976; 21: 459-64. Fluoride accumulation by a strain of human oral Streptococcus sanguis. Kashket S, Rodriguez VM.
- 23) Pediatric Dental Journal 2012; 22: 140-144. Effect of pH on fluoride penetration into natural human plaque. Takeshi Tokura, Colin Robinson, Philip Watson, Hani Abudiak, Takashi Nakano, Kimihiko Higashi, Tomokazu Naganawa, Kazuo Kato, Osamu Fukuta, Haruo Nakagaki.
- 24) J Dent Res. 2005; 84: 451-5. Penetration of fluoride into natural plaque biofilms. Watson PS, Pontefract HA, Devine DA, Shore RC, Nattress BR, Kirkham J, Robinson C.
- 25) Caries Res. 2002; 36: 256-65. Plaque fluoride concentrations are dependent on plaque calcium concentrations. Whitford GM, Wasdin JL, Schafer TE, Adair SM.
- 26) Caries Res. 2010; 44: 108-15. No calcium-fluoride-like deposits detected in plaque shortly after a sodium fluoride mouthrinse. Vogel GL, Tenuta LM, Schumacher GE, Chow LC.
- 27) Caries Research 1996; 30: 458-464. The role of cation bridging in microbial fluoride binding. Rose RK, Shellis RP, Lee AR.
- 28) Caries Res. 1992; 26: 56-8. Fluoride uptake and clearance from the buccal mucosa following mouthrinsing (short communication). Jacobson AP, Stephen KW, Strang R.
- 29) Pediatr Dent. 1991; 13: 103-5. Salivary fluoride concentrations in children with various systemic fluoride exposures. Wilson AC, Bawden JW.
- 30) Community Dent Oral Epidemiol. 1976; 4: 210-4. Associations between the total fluoride content of dental plaque and individual caries experience in Australian children. Agus HM, Schamschula RG, Barmes DE, Bunzel M.
- 31) J Dent Assoc S Afr. 1994; 49: 5-10. The relationship between plaque index scores, fluoride content of plaque, plaque pH, dental caries experience and fluoride concentration in drinking water in a group of primary school children. Hartshorne JE, Grobler SR, Louw AJ, Carstens IL, Laubscher JA.

- 32) J Dent Res. 1990; 69: 436-41. Prevention of population shifts in oral microbial communities in vitro by low fluoride concentrations. Bradshaw DJ, McKee AS, Marsh PD.
- 33) Oral Microbiol Immunol. 1991; 6: 288-91. Acidogenesis in relation to fluoride resistance of Streptococcus mutans. Van Loveren C, Van de Plassche-Simons YM, De Soet JJ, De Graaff J, Ten Cate JM.
- 34) J Dent Res. 1990; 69 (Spec Iss), 660-667. Biological effects of fluoride on oral bacteria. Hamilton IR.
- 35) Caries Res. 1977; 11 Suppl 1:262-91. Effects of fluoride on enzymatic regulation of bacterial carbohydrate metabolism. Hamilton IR.
- 36) Arch Oral Biol. 1981; 26: 615-23. Uptake of fluoride and its inhibitory effects in oral microorganisms in culture. Edgar WM, Cockburn MA, Jenkins GN.
- 37) Oral Microbiol Immunol. 1997; 12: 91-7. Inhibition of purified enolases from oral bacteria by fluoride. Guha-Chowdhury N, Clark AG, Sissons CH.
- 38) J Dent Res. 2011; 90: 1463-8. Metabolomic effects of xylitol and fluoride on plaque biofilm in vivo. Takahashi N, Washio J.
- 39) Caries Res. 2001; 35 Suppl 1: 65-70. Antimicrobial activity of fluoride and its in vivo importance: identification of research questions. Van Loveren C.
- 40) J Dent Res. 1990; 69 Spec No: 676-81; discussion 682-3. The antimicrobial action of fluoride and its role in caries inhibition. Van Loveren C.
- 41) Caries Res. 2002; 36: 53-7. Acidogenicity of buccal plaque after a single rinse with amine fluoride stannous fluoride mouthrinse solution. Damen JJ, Buijs MJ, ten Cate JM.
- 42) Acta Odontol Scand. 1978; 36: 211-8. The effect of stannous fluoride on human plaque acidogenicity in situ (Stephan curve). Svatun B, Attramadal A.
- 43) J Clin Dent. 1995; 6 Spec No: 80-3. Antimicrobial effects of a stabilized stannous fluoride dentifrice in reducing plaque acid production--a single-brushing PGRM study. Liang N, White DJ, Cox E, Busemeyer BA.
- 44) Scand J Dent Res. 1980; 88: 389-96. Thiol groups and reduced acidogenicity of dental plaque in the presence of metal ions in vivo. Oppermann RV, Rølla G, Johansen JR, Assev S.
- 45) Scand J Dent Res. 1980; 88: 476-80. Effect of fluoride and non-fluoride salts of copper, silver and tin on the acidogenicity of dental plaque in vivo. Oppermann RV, Johansen JR.
- 46) Arch Oral Biol. 2002; 47: 117-29. Inhibitory effect of ZnCl₂ on glycolysis in human oral microbes. He G, Pearce EI, Sissons CH.
- 47) Caries Res. 1988; 22: 371-4. Effect of a combination of copper and hexetidine on the acidogenicity and copper accumulation in dental plaque in vivo. Grytten J, Aamdal Scheie A, Afseth J.
- 48) J Oral Rehabil. 1997; 24: 350-7. Antifungal effect of zeolite-incorporated tissue conditioner against Candida albicans growth and/or acid production. Nikawa H, Yamamoto T, Hamada T, Rahardjo MB, Murata H, Nakanoda S.

第9章:脱灰液に含まれる有機酸の濃度や種類の影響

 Crit Rev Oral Biol Med. 1994; 5: 1-25. Composition and cariogenic potential of dental plaque fluid. Margolis HC, Moreno EC.

- J Dent Res. 1985; 64: 786-92. Importance of high pKA acids in cariogenic potential of plaque. Margolis HC, Moreno EC, Murphy BJ.
- 3) J Dent Res. 1999; 78: 1326-35. Kinetics of enamel demineralization in vitro. Margolis HC, Zhang YP, Lee CY, Kent RL Jr, Moreno EC.
- 4) Stability constant of metal ion complexes. Suppl. 1, Special Publ., No 25 (Chemical Society, London 1971), ed Sillen LG and Martell AE. Metcalfe and Cooper Ltd (London).
- 5) Calcif Tissue Int. 1992; 50: 137-43. Kinetics of hydroxyapatite dissolution in acetic, lactic, and phosphoric acid solutions. Margolis HC, Moreno EC.
- 6) J Dent Res. 1977; 56: 524-30. Quantitative study of enamel dissolution under conditions of controlled hydrodynamics. White W, Nancollas GH.
- 7) Adv Dent Res. 1997; 11: 566-75. The relationship between surface free-energy and kinetics in the mineralization and demineralization of dental hard tissue. Wu W, Nancollas GH.
- 8) J Dent Res. 1987; 66: 1425-30. Effect of acid type on kinetics and mechanism of dental enamel demineralization. Patel MV, Fox JL, Higuchi WI.

第10章:初期う蝕(表層下脱灰)の特徴

- Br Dent J. 1990; 169: 126-9. The prevalence of clinically undetected occlusal dentine caries in Scottish adolescents. Creanor SL, Russell JI, Strang DM, Stephen KW, Burchell CK.
- Br Dent J. 1993 22; 174: 364-70. Visual and radiographic diagnosis of occlusal caries in first permanent molars and in second primary molars. Ketley CE, Holt RD.
- 3) J Dent Res. 1932; 12: 619-627. Incipient dental caries. Applebaum E.
- 4) Dent Cosmos. 1935; 77: 931-941. Tissue changes in caries. Applebaum E.
- Oper Dent. 1999; 24: 312-5. Digital radiology and image analysis for approximal caries diagnosis. Forner L, Llena MC, Almerich JM, García-Godoy F.
- Adv Dent Res. 1993; 7: 70-9. Advances in methods for diagnosing coronal caries--a review. Angmar-Månsson B, ten Bosch JJ.
- Quintessence Int. 2018; 49: 293-299. In-vivo performance of impedance spectroscopy, laser fluorescence, and bitewing radiographs for occlusal caries detection. Mortensen D, Hessing-Olsen I, Ekstrand KR, Twetman S.
- 8) Eur J Oral Sci. 2016; 124: 188-94. Validation of DIAGNOdent laser fluorescence and the International Caries Detection and Assessment System (ICDAS) in diagnosis of occlusal caries in permanent teeth: an in vivo study. Castilho LS, Cotta FV, Bueno AC, Moreira AN, Ferreira EF, Magalhães CS.
- 9) J Adv Prosthodont. 2017; 9: 432-438. Detection of proximal caries using quantitative light-induced fluorescencedigital and laser fluorescence: a comparative study. Yoon HI, Yoo MJ, Park EJ.
- 10) Am J Dent. 2014; 27: 291-5. Remineralization of early caries by chewing sugar-free gum: a clinical study using quantitative light-induced fluorescence. Dong Y, Yin W, Hu D, Zhang X, Xu L, Dodds WJ, Tian M.
- Caries Res. 2015; 49: 434-41. Effect of CPP-ACP Paste on Enamel Carious Lesion of Primary Upper Anterior Teeth Assessed by Quantitative Light-Induced Fluorescence: A One-Year Clinical Trial. Sitthisettapong T, Doi T, Nishida Y, Kambara M, Phantumvanit P.

- 12) J Dent. 2017; 62: 31-35. OCT assessment of non-cavitated occlusal carious lesions by variation of incidence angle of probe light and refractive index matching. Park KJ, Haak R, Ziebolz D, Krause F, Schneider H.
- J Biomed Opt. 2003; 8: 642-7. Correlation of quantitative light-induced fluorescence and optical coherence tomography applied for detection and quantification of early dental caries. Amaechi BT, Podoleanu A, Higham SM, Jackson DA.
- 14) J Biomed Opt. 2011; 16: 071408. Estimation of lesion progress in artificial root caries by swept source optical coherence tomography in comparison to transverse microradiography. Natsume Y, Nakashima S, Sadr A, Shimada Y, Tagami J, Sumi Y.
- 15) Pediatr Dent. 2015; 37: E14-22. In Vivo and In Vitro performance of Conventional Methods, DIAGNOdent, and an Electronic Caries Monitor for Occlusal Caries Detection in Primary Teeth. Kucukyilmaz E, Sener Y, Botsali MS.
- 16) J Dent Res. 2004; 83 Spec No C: C76-9. Electrical measurements for use in caries clinical trials. Longbottom C, Huysmans MC.
- 17) J Dent Res. 1997; 76: 875-82. Quantitative diagnosis of small approximal caries lesions utilizing wavelengthdependent fiber-optic transillumination. Vaarkamp J, Ten Bosch JJ, Verdonschot EH, Tranaeus S.
- 18) Caries Res. 2000; 34: 2-7. Prevalence of dental caries in Latvian 11- to 15-year-Old children and the enhanced diagnostic yield of temporary tooth separation, FOTI and electronic caries measurement. Deery C, Care R, Chesters R, Huntington E, Stelmachonoka S, Gudkina Y.
- 19) J Am Dent Assoc. 2005; 136: 1682-7. Digital imaging fiber-optic trans-illumination, F-speed radiographic film and depth of approximal lesions. Young DA, Featherstone JD.
- 20) J Am Dent Assoc. 2018; 149: 299-307.e1. Influence of 2 caries-detecting devices on clinical decision making and lesion depth for suspicious occlusal lesions: A randomized trial from The National Dental Practice-Based Research Network. Makhija SK, Bader JD, Shugars DA, Litaker MS, Nagarkar S, Gordan VV, Rindal DB, Pihlstrom DJ, Mungia R, Meyerowitz C, Gilbert GH; National Dental Practice-Based Research Network (PBRN) Collaborative Group.
- 21) J Evid Based Med. 2016; 9: 213-224. Laser fluorescence of caries detection in permanent teeth in vitro: a systematic review and meta-analysis. Rosa MI, Schambeck VS, Dondossola ER, Alexandre MC, Tuon L, Grande AJ, Hugo F.
- 22) J Evid Based Dent Pract. 2006; 6: 91-100. The evidence supporting alternative management strategies for early occlusal caries and suspected occlusal dentinal caries. Bader JD, Shugars DA.
- 23) J Dent. 2006; 34: 727-39. Caries detection and diagnosis: novel technologies. Pretty IA.
- 24) J Dent Res. 2004; 83 Spec No C: C84-8. Optical methods--quantitative light fluorescence. Stookey GK.
- 25) <u>www.icdas.org/.</u>(2019年3月アクセス)
- 26) healthcare.gr.jp/resource/journal/2009/aj11_3.pdf
- 27) Zandoná AF Zero DT. Diagnostic tools for early caries detection. J Am Dent Assoc, Vol 137, No 12, 1675-1684. 2006.

- 28) Diniz, MB, Lima LM, Santos-Pinto L, Eckert GJ, Ferreira Zandoná AG, and de Cassia Loiola Cordeiro R. Influence of the ICDAS E-Learning Program for Occlusal Caries Detection on Dental Students. J Dent Educ. 2010 74: 862-868.
- 29) https://www.nichigakushi.or.jp/news/pdf/110412.pdf. 学校歯科保健ってな~に? 日本学校歯科医会
- 30) ザ·クインテセンス 2013. 32. Hidden Caries を考える. う蝕窩洞発症以前に介入することは可能なのか? PART1: Hidden Caries を知る. 中嶋省志.
- 31) Dent Update. 1997. 24: 182-184. Occlusal 'hidden caries'. Weerheijm KL.
- 32) Int Dent J. 1997. 47: 259-265. Hidden caries: what is it? Does it exist? Does it matter? Ricketts D, Kidd E, Weerheijm K, de Soet H.
- 33) Caries Res. 2006. 40: 38-42. The effect of adjacent dentine blocks on the demineralisation and remineralisation of enamel in vitro. Lynch RJ, Ten Cate JM.
- 34) Caries Res. 1997. 31: 30-34. The effect of fluoridation on the occurrence of hidden caries in clinically sound occlusal surfaces. Weerheijm KL, Kidd EA, Groen HJ.
- 35) Int J Paediatr Dent. 2013; 23: 72-6. Effect of the widespread use of fluorides on the occurrence of hidden caries in children. Hashizume LN, Mathias TC, Cibils DM, Maltz M.
- 36) ASDC J Dent Child. 1990. 57: 428-432. Occlusal hidden caries: a bacteriological profile. Weerheijm KL, de Soet JJ, de Graaff J, van Amerongen WE.
- 37) 口腔衛生学会 2002 年総会抄録. 演題番号 10146. QLF 初期う蝕検出システムによるエナメル質の非 脱灰性白色部の計測. 松山和正,村田省三,斉藤浩一,長沼健,金子憲司,中嶋省志.
- 38) Monogr Oral Sci. 2000; 17: 144-62. Application of quantitative light-induced fluorescence for assessing early caries lesions. van der Veen MH, de Josselin de Jong E.
- 39) Caries Res. 2001; 35: 21-6.Comparison of QLF and DIAGNOdent for quantification of smooth surface caries. Shi XQ, Tranaeus S, Angmar-Månsson B.
- 40) 口腔衛生学会雑誌. 2003; 53: 383-384. QLF 法によるフッ素歯磨剤の初期う蝕改善効果に関する臨床研 究(第一報) 初期う蝕の改善効果. 中嶋省志, 斎藤浩一, 藤川晴彦, 氏家高志, 上村参生, 中矢健二, 薬 師寺健太郎, 伊津元博, 田中秀直, 神原正樹.
- 41) Eur J Orthod. 2007; 29: 294-8. Caries lesions after orthodontic treatment followed by quantitative light-induced fluorescence: a 2-year follow-up. Mattousch TJ, van der Veen MH, Zentner A.
- 42) Photodiagnosis Photodyn Ther. 2018; 23:176-180. Early caries detection methods according to the depth of the lesion: An in vitro comparison. Kim HE, Kim BI.
- 43) Connect Tissue Res. 1998; 38: 61-72; discussion 73-9. Determination of mineral concentration in dental enamel from X-ray attenuation measurements. Elliott JC, Wong FS, Anderson P, Davis GR, Dowker SE.

第11章:表層下脱灰の形成メカニズム

- 1) Arch Oral Biol. 1966; 11: 397-421. Kinetics of enamel dissolution during formation of incipient caries-like lesions. Gray JA.
- 2) J Dent Res. 1992; 71: 1473-81. Subsurface demineralization in dental enamel and other permeable solids during acid dissolution. Anderson P, Elliott JC.

- Arch Oral Biol. 1967; 12: 85-97. Variations of enamel density in sections of human teeth. Weidmann SM, Weatherell JA, Hamm SM.
- 4) Arch Oral Biol. 2011; 56: 997-1004. Mineral densities and elemental content in different layers of healthy human enamel with varying teeth age. He B, Huang S, Zhang C, Jing J, Hao Y, Xiao L, Zhou X.
- 5) Arch Oral Biol. 2004; 49: 937-44. X-ray microtomographic study of mineral concentration distribution in deciduous enamel. Wong FS, Anderson P, Fan H, Davis GR.
- 6) Arch Oral Biol. 1975; 20:317-25. Structural features of human dental enamel as revealed by isothermal water vapour sorption. Zahradnik RT, Moreno EC.
- 7) Caries Res. 1981; 15: 70-7. Distribution of magnesium in mature human enamel. Robinson C, Weatherell JA, Hallsworth AS.
- 8) Pediatric Dental Journal. 2012. 22: 103-109. Distribution of fluoride and magnesium concentrations in deciduous tooth enamel of children with cerebral palsy and Down syndrome. Yoshitaka Kusabe, Takashi Nakano, Takuma Okamoto, Shinji Tsuboi, Susumu Matsumoto, Haruo Nakagaki, Osamu Fukuta.
- J Dent Res. 1976; 55: 664-70. Effect of salivary pellicle on enamel subsurface demineralization in vitro. Zahradnik RT, Moreno EC, Burke EJ.
- Acta Odontol Scand. 2017; 75: 376-378. Fluoride varnishes containing sodium trimetaphosphate reduce enamel demineralization in vitro. Manarelli MM, Delbem ACB, Báez-Quintero LC, de Moraes FRN, Cunha RF, Pessan JP.
- 11) Caries Res. 2013; 47: 532-8. In vitro evaluation of the effect of mouth rinse with trimetaphosphate on enamel demineralization. Favretto CO, Danelon M, Castilho FC, Vieira AE, Delbem AC.
- 12) J Biol Buccale. 1984; 12: 339-48. Influence of EHDP and F on Ca and P loss from enamel during the intra-oral cariogenicity test. Wöltgens JH, Qua C, de Blieck-Hogervorst JM.
- 13) J Biol Buccale. 1986; 14: 231-4. Hardness changes and mineral loss in enamel during the intra oral cariogenicity test in the presence of 0.125% EHDP with or without 0.1% F-. Van Croonenburg EJ, Wöltgens JH, Qua CJ, de Blieck-Hogervorst JM.
- J Dent Res. 1991; 70: 123-6. The effect of EHDP concentration on enamel demineralization in vitro. Christoffersen J, Christoffersen MR, Ruben J, Arends J.
- 15) Caries Res. 1992; 26: 409-17. Effects of fluoride and methanehydroxydiphosphate on enamel and on dentine demineralization. Arends J, Christoffersen J, Buskes JA, Ruben J.
- 16) Arch Oral Biol. 1978; 23: 397-404. Surface layer phenomena in in-vitro early caries-like lesions of human tooth enamel. Featherstone JD, Duncan JF, Cutress TW.
- 17) Arch Oral Biol. 1979; 24: 101-12. A mechanism for dental caries based on chemical processes and diffusion phenomena during in-vitro caries simulation on human tooth enamel. Featherstone JD, Duncan JF, Cutress TW.
- ロ腔衛生学会雑誌. 1991; 41: 596-606. ヒトエナメル質脱灰におよぼす乳酸緩衝液の飽和度および溶 存フッ素濃度の影響について: Single thin section 法による研究. 中嶋省志, Moreno EC.
- 19) Caries Res 1986; 20: 510–517. Lesion Formation in Abraded Human Enamel. Influence of the Gradient in Solubility and the Degree of Saturation of Buffer Solutions on the Lesion Characteristics. Theuns HM, Driessens FCM, van Dijk JWE.

- 20) Japanese Journal of Oral Biolo. (歯科基礎医学会雑誌) 1979: 21: 279-284. Solid-solution interfacial phenomena at the synthetic hydroxyapatite pellet surface. 2. Effects of ion permselective membranes on the acid dissolution of pellets. Okazaki M, Takahashi J, Doi Y, Moriwaki Y, Aoba T.
- 21) Caries Res 1985; 19: 403–406. Scanning X-Ray Microradiographic Study of the Formation of Caries-Like Lesions in Synthetic Apatite Aggregates. Anderson P, Elliott JC.
- 22) Caries Res. 1992; 26: 290-2. Effect of hard cheese exposure, with and without fluoride prerinse, on the rehardening of softened human enamel. Gedalia I, Davidov I, Lewinstein I, Shapira L.
- 23) Arch Oral Biol. 1987; 32: 75-80. Protein and mineral changes in bovine enamel during in-vitro demineralization. van der Linden AH, Booij M, ten Bosch JJ, Arends J.
- 24) Caries Res. 1985; 19: 22-35. Kinetic and thermodynamic aspects of enamel demineralization. Margolis HC, Moreno EC.
- 25) Arch Oral Biol. 1967; 12: 1505-21. Some aspects of the ultrastructure of early human enamel caries seen with the electron microscope. Johnson NW.
- 26) J Oral Pathol. 1981; 10: 32-9. The intact surface layer in natural enamel caries and acid-dissolved hydroxyapatite pellets. An X-ray diffraction study. Aoba T, Moriwaki Y, Doi Y, Ozkazaki M, Takahashi J, Yagi T.
- 27) J Dent Res. 1974; 53: 226-35. Chemistry of enamel subsurface demineralization in vitro. Moreno EC, Zahradnik RT.
- 28) Arch Oral Biol. 1978; 23: 397-404. Surface layer phenomena in in-vitro early caries-like lesions of human tooth enamel. Featherstone JD, Duncan JF, Cutress TW.
- 29) J Dent Res. 1992; 71: 25-31. The effect of sucrose on plaque pH in the primary and permanent dentition of caries-inactive and -active Kenyan children. Fejerskov O, Scheie AA, Manji F.
- 30) Caries Res. 1987; 21: 310-25. Ultramicro analysis of the fluid in human enamel during in vitro caries attack by hydrochloric acid. Vogel GL, Carey CM, Chow LC, Gregory TM, Brown WE.
- 31) J Dent Res. 1991; 70: 1479-85. Permselectivity of sound and carious human dental enamel as measured by membrane potential. Carey CM, Vogel GL, Chow LC.
- 32) J Dent Res. 1988; 67: 1172-80. Micro-analysis of mineral saturation within enamel during lactic acid demineralization. Vogel GL, Carey CM, Chow LC, Gregory TM, Brown WE.
- 33) J Dent Res. 1984; 63: 868-73. A physicochemical bench-scale caries model. Chow LC, Brown WE.
- 34) J Dent Res. 1986; 65: 1115-20. Effects of neutral salts in a bench-scale caries model. Brown WE, Chow LC.
- 35) J coll interface sci. 1987; 118: 262-269. Subsurface dissolution and precipitation during leaching of porous ionic solids. Leaist DG.
- 36) Caries Res. 1997; 31: 125-31. Relative ability of laser fluorescence techniques to quantitate early mineral loss in vitro. Ando M, Hall AF, Eckert GJ, Schemehorn BR, Analoui M, Stookey GK.
- 37) Clin Oral Investig. 2015; 19: 1947-54. Fluoride dose-response of human and bovine enamel artificial caries lesions under pH-cycling conditions. Lippert F, Juthani K.
- 38) J Dent Res. 1985; 64 Spec No: 607-12. The dentin-predentin complex and its permeability: anatomical overview. Thomas HF.

- 39) Arch Oral Biol. 1976; 21: 355-62. Scanning electron microscopic investigation of human dentinal tubules. Garberoglio R, Brännström M.
- 40) Caries Res. 2013; 47: 162-70. Different protocols to produce artificial dentine carious lesions in vitro and in situ: hardness and mineral content correlation. Moron BM, Comar LP, Wiegand A, Buchalla W, Yu H, Buzalaf MA, Magalhães AC.
- 41) J Dent Res. 1997; 76: 1845-53. Arrest of root surface caries in situ. Nyvad B, ten Cate JM, Fejerskov O.
- 42) J Dent. 2005; 33: 269-73. Development of an in situ root caries model B. In situ investigations. Smith PW, Preston KP, Higham SM.
- 43) Caries Res. 2000; 34: 395-403. Relationship between mineral distributions in dentine lesions and subsequent remineralization in vitro. Kawasaki K, Ruben J, Tsuda H, Huysmans MC, Takagi O.
- 44) Dent Mater J. 2016; 35: 769-775. Effects of zinc fluoride on inhibiting dentin demineralization and collagen degradation in vitro: A comparison of various topical fluoride agents. Thanatvarakorn O, Islam MS, Nakashima S, Sadr A, Nikaido T, Tagami J.

第12章:局所塗布剤の作用メカニズムとフッ化カルシウム様物質

- Community Dent Oral Epidemiol. 1999; 27: 62-71. A re-examination of the pre-eruptive and post-eruptive mechanism of the anti-caries effects of fluoride: is there any anti-caries benefit from swallowing fluoride? Limeback H.
- 2) J Public Health Dent. 2004; 64: 101-5. Caries prevalence in a rural Chilean community after cessation of a powdered milk fluoridation program. Mariño RJ, Villa AE, Weitz A, Guerrero S.
- 3) Caries Res. 2004; 38: 258-62. Systemic versus topical fluoride. Hellwig E, Lennon AM.
- 4) Acta Odontol Scand. 1980; 38: 219-22. The effects of stannous and stannic ions on the formation and acidogenicity of dental plaque in vivo. Ellingsen JE, Svatun B, Rölla G.
- 5) Arch Oral Biol. 1987; 32: 807-10. Effects of NaF and SnF₂ on growth, acid and glucan production of several oral streptococci. Zameck RL, Tinanoff N.
- 6) J Clin Dent. 1995; 6 Spec No: 84-8. Effect of a stabilized stannous fluoride dentifrice on plaque acid (toxin) production. White DJ, Cox ER, Gwynn AV.
- 7) Arch Oral Biol. 1977; 22: 405-7. The decomposition of monofluorophosphate by enzymes in whole human saliva. Pearce EI, Jenkins GN.
- J Dent Res. 1982; 61: 953-6. In vitro hydrolysis of monofluorophosphate by dental plaque microorganisms. Jackson LR.
- 9) Caries Res. 1987; 21: 97-103. Sodium monofluorophosphate degradation by oral streptococci, plaque and saliva. Saotome T, Gerencser VF, Lim JK.
- Caries Res. 2010; 44: 55-9. Kinetics of monofluorophosphate hydrolysis in a bacterial test plaque in situ. Tenuta LM, Del Bel Cury AA, Tabchoury CP, Moi GP, Silva WJ, Cury JA.
- Am J Dent. 1993; Spec No: S13-42. A critical review of the 10 pivotal caries clinical studies used in a recent meta-analysis comparing the anticaries efficacy of sodium fluoride and sodium monofluorophosphate dentifrices. Volpe AR, Petrone ME, Davies RM.

- 12) Am J Dent. 1993; 6 Spec No: S7-12. The relative anticaries effectiveness of sodium monofluorophosphate and sodium fluoride as contained in currently available dentifrice formulations. DePaola PF, Soparkar PM, Triol C, Volpe AR, Garcia L, Duffy J, Vaughan B.
- 13) J Clin Dent. 1995; 6: 135-8. Intra-oral comparison and evaluation of the ability of fluoride dentifrices to promote the remineralization of caries-like lesions in dentin and enamel. Sullivan RJ, Fletcher R, Bachiman R, Penugonda B, LeGeros RZ.
- 14) Scand J Dent Res. 1992; 100: 154-8. Uptake of KOH-soluble and KOH-insoluble fluoride in sound human enamel after topical application of a fluoride varnish (Duraphat) or a neutral 2% NaF solution in vitro. Cruz R, Ogaard B, Rölla G.
- 15) Scand J Dent Res. 1991; 99: 96-99. Deposition of alkali-soluble fluoride on enamel surface with or without pellicle. Cruz R, Rolla G.
- 16) J Dent Res. 1990; 69 Spec No: 587-94; discussion 634-6. Physical and chemical considerations of the role of firmly and loosely bound fluoride in caries prevention. White DJ, Nancollas GH.
- 17) Am J Dent. 2002; 15: 169-72. Effect of application time of APF and NaF gels on microhardness and fluoride uptake of in vitro enamel caries. Delbem AC, Cury JA.
- 18) JADA. 2006; 137: 1151-1159. Professionally applied topical fluoride Evidence-based clinical recommendations. American Dental Association Councile on Scientific Affairs.
- 19) Arch Oral Biol. 1975; 20: 333-9. Determination of the calcium fluoride formed from in vitro exposure of human enamel to fluoride solutions. Caslavska V, Moreno EC, Brudevold F.
 J Dent Res. 1988; 67: 447-9. Effects of inorganic orthophosphate and pyrophosphate on dissolution of calcium fluoride in water. Lagerlöf F, Saxegaard E, Barkvoll P, Rølla G.
- 20) Uptake and retention of fluoride in sound dental enamel in vivo after a single application of 2% neutral sodium fluoride. Grobler SR. Ogaad B, Rolla G. 1981; 17-25. In: Tooth surface Interactions and Preventive Dentistry. Eds: Rolla,G, Sonji T, Embery G. London Information Retrieval Inc.
- 21) Acta Odontol Scand. 1988; 46, 355-359. Dissolution of calcium fluoride in human saliva.
- 22) Studies on the solubility of calcium fluoride in human saliva. Rolla G, Ogaad B. 1986; 45-50. In: Factors relating to demineralization and remineralization of the teeth. Ed: Leach SA. Oxford: IRL Press Limited.
- 23) J Periodontol. 2011; 82: 445-51. Study of orthophosphate, pyrophosphate, and pyrophosphatase in saliva with reference to calculus formation and inhibition. Pradeep AR, Agarwal E, P AR, Rao MS, Faizuddin M.
- 24) J Dent Res. 1988; 67: 447-9. Effects of inorganic orthophosphate and pyrophosphate on dissolution of calcium fluoride in water. Lagerlöf F, Saxegaard E, Barkvoll P, Rølla G.
- 25) Acta Odontol Scand. 1988; 46: 347-53. 'Calcium fluoride-like' material formed in partially demineralized human enamel in vivo owing to the action of fluoridated toothpastes. Arends J, Reintsema H, Dijkman TG.

第13章:フッ化物による初期う蝕の再石灰化促進メカニズム

 Crit Rev Oral Biol Med 1994; 5: 1-25. Margolis HC, Moreno EC. Composition and cariogenic potential of dental plaque fluid.
- 2) Caries Res. 1990; 24: 263-6. Remineralization of human enamel in situ after 3 months: the effect of not brushing versus the effect of an F dentifrice and an F-free dentifrice. Dijkman A, Huizinga E, Ruben J, Arends J.
- 3) 口腔衛生学会誌. 1992; 42: 512-513. in vitro における脱灰エナメル質の再石灰化に及ぼす低濃度フッ素 の効果. 市川恵子, 中嶋省志.
- 4) J Dent Res. 1987; 66: 1644-6. The effect of baseline lesion mineral loss on in situ remineralization. Strang R, Damato FA, Creanor SL, Stephen KW.
- 5) Int J Dent. 2017; 2017:4321925. Effect of Enamel Caries Lesion Baseline Severity on Fluoride Dose-Response. Lippert F
- 6) 日本歯科保存学会 2003 学術大会抄録; 演題 A-14 (p27). 初期う蝕再石灰化に及ぼすプラークの影響 -QLF 法および TMR 法によるインビトロ評価- 西永英司, 福田康
- 7) Caries Res. 1995; 29: 2-7. A new method for in vivo quantification of changes in initial enamel caries with laser fluorescence. de Josselin de Jong E, Sundström F, Westerling H, Tranaeus S, ten Bosch JJ, Angmar-Månsson B.
- 8) 口腔衛生学会雑誌. 2000; 50: 728-729. QLF 法(蛍光分析)による脱灰エナメル質の密度測定条件の最適 化. 長沼健, 松山和正, 中嶋省志 金子憲司.
- 9) 口腔衛生学会雑誌. 2003; 53: 383-384. QLF 法によるフッ素歯磨剤の初期う蝕改善効果に関する臨床研究(第一報) 初期う蝕の改善効果. 中嶋省志, 斎藤浩一, 藤川晴彦, 氏家高志, 上村参生, 中矢健二, 薬師寺健太郎, 伊津元博, 田中秀直, 神原正樹.
- 10) デンタルハイジーン 2004; 24: 255-259. 初期齲蝕の定量・モニタリングシステム(QLF法). 中嶋省志
- 11) Arch Oral Biol. 1994; 39: 141-6. Inhibition of hydroxyapatite crystal growth by lipoteichoic acid. Damen JJ, ten Cate JM.
- 12) J Dent Res. 1995; 74: 1689-94. Lipoteichoic acid inhibits remineralization of artificial subsurface lesions and surface-softened enamel. Damen JJ, Exterkate RA, ten Cate JM.
- Scand J Dent Res. 1977; 85: 387-91. Adsorption of Streptococcus mutans lipoteichoic acid to hydroxyapatite. Ciardi JE, Rölla G, Bowen WH, Reilly JA.
- 14) Arch Oral Biol. 1994; 39: 753-7. Adsorption of [3H]-lipoteichoic acid to hydroxyapatite and its effect on crystal growth. Damen JJ, de Soet JJ, ten Cate JM.
- 15) 日本口腔衛生学会 1992 年学術大会抄録. 42: 510-511. in vitro における脱灰象牙質の再石灰化に及ぼ す脱灰巣の深さおよび低濃度フッ素の影響. 福田一朗, 中嶋省志.
- 16) Am J Dent. 2009; 22: 49-54. Association between staining by caries detector dye and the corresponding mineral density in dentin caries. Sunago M, Nakashima S, Tagami J.
- 17) Clinical decision making for caries management in root surface. A report for the NHI consensus development conference on diagnosis and management of dental caries through life. 2001. Leake JK.
- 18) www.kokuhoken.or.jp/jsdh/file/news/130829/abstract.pdf 他多数
- 19) Caries Res. 2001; 35: 41-6. Reversal of primary root caries using dentifrices containing 5,000 and 1,100 ppm fluoride. Baysan A, Lynch E, Ellwood R, Davies R, Petersson L, Borsboom P.
- 20) J Clin Dent. 2013; 24 Spec no A: A23-31. A clinical investigation of the efficacy of a dentifrice containing
 1.5% arginine and 1450 ppm fluoride, as sodium monofluorophosphate in a calcium base, on primary root caries.
 Hu DY, Yin W, Li X, Feng Y, Zhang YP, Cummins D, Mateo LR, Ellwood RP.

- 21) J Clin Dent. 2013; 24: 79-87. Fluoride toothpaste containing 1.5% arginine and insoluble calcium as a new standard of care in caries prevention. ten Cate JM, Cummins D.
- 22) Dent Mater J. 2013; 32: 241-7. Cariotester, a new device for assessment of dentin lesion remineralization in vitro. Utaka S, Nakashima S, Sadr A, Ikeda M, Nikaido T, Shimizu A, Tagami J.
- 23) Arch Oral Biol. 2015; 60: 574-81. Formation and characterization of hypermineralized zone beneath dentine lesion body induced by topical fluoride in-vitro. Khunkar SJ, Utaka S, Hariri I, Sadr A, Ikeda M, Nakashima S, Nikaido T, Tagami J.
- 24) Arch Oral Biol. 2016; 68: 35-42. In vitro dentine remineralization with a potential salivary phosphoprotein homologue. Romero MJ, Nakashima S, Nikaido T, Sadr A, Tagami J.
- 25) J Dent Res. 1998; 77: 1622-9. The activation and function of host matrix metalloproteinases in dentin matrix breakdown in caries lesions. Tjäderhane L, Larjava H, Sorsa T, Uitto VJ, Larmas M, Salo T.
- 26) Arch Oral Biol. 1983; 28: 185-7. A preliminary study of activation of collagenase in carious human dentine matrix. Dayan D, Binderman I, Mechanic GL.
- 27) J Dent Res. 2015; 94: 241-51. Role of dentin MMPs in caries progression and bond stability. Mazzoni A, Tjäderhane L, Checchi V, Di Lenarda R, Salo T, Tay FR, Pashley DH, Breschi L.
- 28) Caries Res. 2015; 49: 193-208. Matrix metalloproteinases and other matrix proteinases in relation to cariology: the era of 'dentin degradomics'. Tjäderhane L, Buzalaf MA, Carrilho M, Chaussain C.
- 29) Caries Res. 2015; 49: 1-8. Caries correlates strongly to salivary levels of matrix metalloproteinase-8. Hedenbjörk-Lager A, Bjørndal L, Gustafsson A, Sorsa T, Tjäderhane L, Åkerman S, Ericson D.
- 30) Caries Res. 1991; 25: 46-50. Susceptibility of the collagenous matrix from bovine incisor roots to proteolysis after in vitro lesion formation. Klont B, ten Cate JM.
- 31) Arch Oral Biol. 1991; 36: 299-304. Degradation of bovine incisor root collagen in an in vitro caries model. Klont B, Damen JJ, ten Cate JM.
- 32) J Dent Res. 1992; 71: 1498-502. Solubilization of dentin matrix collagen in situ. Van Strijp AJ, Klont B, Ten Cate JM.
- 33) Caries Res. 2015; 49 Suppl 1: 30-7. Role of host-derived proteinases in dentine caries and erosion. Buzalaf MA, Charone S, Tjäderhane L.
- 34) J Dent Res. 1994; 73: 1523-9. The influence of the organic matrix on demineralization of bovine root dentin in vitro. Kleter GA, Damen JJ, Everts V, Niehof J, Ten Cate JM.
- 35) Am J Dent. 2009; 22: 115-21. The in vitro effect of a collagenolytic enzyme inhibitor on lesion development in root dentin. Fukuda Y, Nakashima S, Ujiie T.
- 36) Scand J Dent Res. 1993; 101: 72-7. Inhibition of bovine dentin demineralization by a glutardialdehyde pretreatment: an in vitro caries study. Boonstra W, de Vries J, ten Bosch J, Ogaard B, Arends J.
- 37) Caries Res. 2018; 52: 297-302. The Effect of Chemically Modified Tetracycline-3 on the Progression of Dental Caries in Rats. Xu J, Miao C, Tian Z, Li J, Zhang C, Yang D.
- 38) J Dent Res. 2001; 80: 1545-9. The effects of MMP inhibitors on human salivary MMP activity and caries progression in rats. Sulkala M, Wahlgren J, Larmas M, Sorsa T, Teronen O, Salo T, Tjäderhane L.

- 39) Caries Res. 1991; 25:39-45. Remineralization of bovine incisor root lesions in vitro: the role of the collagenous matrix. Klont B, ten Cate JM.
- 40) J Dent Res. 1997; 76: 1845-53. Arrest of root surface caries in situ. Nyvad B, ten Cate JM, Fejerskov O.

第14章: 唾液タンパク質(リン・タンパク質)と再石灰化現象

- J Dent Res. 1980; 59: 1430-8. Immunochemical identification and determination of proline-rich proteins in salivary secretions, enamel pellicle, and glandular tissue specimens. Kousvelari EE, Baratz RS, Burke B, Oppenheim FG.
- 2) Calcif Tissue Int. 1979; 24: 28: 7-16. Effect of human salivary proteins on the precipitation kinetics of calcium phosphate. Moreno EC, Varughese K, Hay DI.
- 3) Calcif Tissue Int. 1982; 34 Suppl 2: S33-40. Effect of fluoride on crystal growth of calcium apatites in the presence of a salivary inhibitor. Margolis HC, Varughese K, Moreno EC.
- Biochem J. 1983; 1: 213: 11-20. Interaction of calcium ions and salivary acidic proline-rich proteins with hydroxyapatite. A possible aspect of inhibition of hydroxyapatite formation. Bennick A, Kells D, Madapallimattam G.
- 5) J Dent Res. 1984; 63: 857-63. Relationship between concentration of human salivary Statherin and inhibition of calcium phosphate precipitation in stimulated human parotid saliva. Hay DI, Smith DJ, Schluckebier SK, Moreno EC.
- 6) Int J Pept Protein Res. 1987; 30: 257-62. Chemical synthesis of phosphoseryl-phosphoserine, a partial analogue of human salivary Statherin, a protein inhibitor of calcium phosphate precipitation in human saliva. Schlesinger DH, Buku A, Wyssbrod HR, Hay DI.
- 7) Caries Res. 1978; 12: 159-69. Quantitative study of the interaction of salivary acidic proline-rich proteins with hydroxyapatite. Bennick A, Cannon M.
- 8) J Biol Chem. 1981; 256: 4741-6. The location and nature of calcium-binding sites in salivary acidic proline-rich phosphoproteins. Bennick A, McLaughlin AC, Grey AA, Madapallimattam G.
- 9) J Dent Res. 1969; 48: 806-10. Some observations on human saliva proteins and their role in the formation of the acquired enamel pellicle. Hay DI.
- 10) Caries Res. 1973; 7: 30-8. Chemical analysis of the acquired pellicle formed in two hours on cleaned human teeth in vivo. Rate of formation and amino acid analysis. Sönju T, Rölla G.
- 11) Adv Dent Res. 2000; 14: 22-8. Saliva and dental pellicle--a review. Lendenmann U, Grogan J, Oppenheim FG.
- 12) Arch Oral Biol. 1991; 36: 631-6. The effects of human salivary cystatins and Statherin on hydroxyapatite crystallization. Johnsson M, Richardson CF, Bergey EJ, Levine MJ, Nancollas GH.
- 13) J Dent Res. 2015; 94: 1106-12. Hydroxyapatite Growth Inhibition Effect of Pellicle Statherin Peptides. Xiao Y, Karttunen M, Jalkanen J, Mussi MC, Liao Y, Grohe B, Lagugné-Labarthet F, Siqueira WL.
- 14) Crit Rev Oral Biol Med. 1993; 4: 251-9. Structural features of salivary function. Lamkin MS, Oppenheim FG.
- 15) J Dent Res. 1989; 68: 1303-7. Adsorbed salivary acidic proline-rich proteins contribute to the adhesion of Streptococcus mutans JBP to apatitic surfaces. Gibbons RJ, Hay DI.

- 16) J Biol Chem. 1992; 267: 5968-76. Salivary Statherin. Dependence on sequence, charge, hydrogen bonding potency, and helical conformation for adsorption to hydroxyapatite and inhibition of mineralization. Raj PA, Johnsson M, Levine MJ, Nancollas GH.
- Arch Oral Biol. 1991; 36: 529-34. Multiple forms of Statherin in human salivary secretions. Jensen JL, Lamkin MS, Troxler RF, Oppenheim FG.
- 18) Int J Pept Protein Res. 1989; 34: 374-80. Complete primary structure of Statherin, a potent inhibitor of calcium phosphate precipitation, from the saliva of the monkey, Macaca arctoides. Schlesinger DH, Hay DI, Levine MJ.
- 19) Structure. 2010; 8; 18: 1678-87. Toward a structure determination method for biomineral-associated protein using combined solid- state NMR and computational structure prediction. Masica DL, Ash JT, Ndao M, Drobny GP, Gray JJ.
- Crit Rev Oral Biol M. 1993; 4: 371-378. Hydroxyapatite binding domains in salivary proteins. Johnsson M, Levine M, Nancollas G.
- 21) Calcif Tissue Int. 1987; 40: 126-32. Inhibition of calcium phosphate precipitation by human salivary acidic proline-rich proteins: structure-activity relationships. Hay DI, Carlson ER, Schluckebier SK, Moreno EC, Schlesinger DH.
- 22) Recent advances in the study of dental calculus, ed JM. ten Cate, IRL Press at Oxford University Press, Eynsham, Oxford, England, 1989. Physical chemistry of calculus formation. Moreno EC, Aoba T, Gaffer A. p129-142.
- 23) Caries Res. 2008; 42: 37-45. Influence of salivary macromolecules and fluoride on enamel lesion remineralization in vitro. Fujikawa H, Matsuyama K, Uchiyama A, Nakashima S, Ujiie T.
- 24) Caries Res. 1990; 24: 226-30. Effect of surface zone deproteinisation on the access of mineral ions into subsurface carious lesions of human enamel. Robinson C, Hallsworth AS, Shore RC, Kirkham J.
- 25) Caries Res. 1998; 32: 193-9. Identification of human serum albumin in human caries lesions of enamel: the role of putative inhibitors of remineralisation. Robinson C, Shore RC, Bonass WA, Brookes SJ, Boteva E, Kirkham J.
- 26) Caries Res. 2000; 34: 188-93. Distribution of exogenous proteins in caries lesions in relation to the pattern of demineralisation. Shore RC, Kirkham J, Brookes SJ, Wood SR, Robinson C.
- 27) J Inorg Biochem. 1994; 55: 21-30. Seeded growth of hydroxyapatite in the presence of dissolved albumin.Gilman H, Hukins DW.
- 28) J Inorg Biochem. 1994; 55: 31-9. Seeded growth of hydroxyapatite in the presence of dissolved albumin at constant composition. Gilman H, Hukins DW.
- 29) J Dent Res. 1996; 75: 803-8. Temporal and compositional characteristics of salivary protein adsorption to hydroxyapatite. Lamkin MS, Arancillo AA, Oppenheim FG.
- 30) デンタルハイジーン 2004; 24: 255-259. 初期齲蝕の定量・モニタリングシステム(QLF法). 中嶋省志
- 31) J Dent Res. 1979; 58: 2066-73. Modification by salivary pellicles of in vitro enamel remineralization.Zahradnik RT.
- 32) Arch Oral Biol. 2016; 68: 35-42. In vitro dentine remineralization with a potential salivary phosphoprotein homologue. Romero MJ, Nakashima S, Nikaido T, Sadr A, Tagami J.
- 33) J Colloid Interf Sci. 1989; 129: 1-14. The Influence of casein on the kinetics of hydroxyapatite precipitation. Van

Kemenade MJJM and de Bruyn PL.

- 34) Calcif Tissue Int. 1984; 36: 651-8. Inhibition of apatite crystal growth by the amino-terminal segment of human salivary acidic proline-rich proteins. Aoba T, Moreno EC, Hay DI.
- 35) J Biol Chem. 1982; 257: 2981-9. Adsorption thermodynamics of acidic proline-rich human salivary proteins onto calcium apatites. Moreno EC, Kresak M, Hay DI.
- 36) Eur J Oral Sci. 2015; 123: 288-96. Inhibition of hydroxyapatite growth by casein, a potential salivary phosphoprotein homologue. Romero MJ, Nakashima S, Nikaido T, Ichinose S, Sadr A, Tagami J.
- 37) Caries Res. 2004; 38: 247-53. Salivary proteins: protective and diagnostic value in cariology? Van Nieuw Amerongen A, Bolscher JG, Veerman EC.

第15章:隠れう蝕(hidden caries)の形成メカニズムと多様な病理所見

- 1) ザ·クインテセンス 2013. 32. Hidden Caries を考える. う蝕窩洞発症以前に介入することは可能なのか? PART 1: Hidden Caries を知る. 中嶋省志.
- 2) J Am Dent Assoc. 2018; 149: 837-849. Evidence-based clinical practice guideline on nonrestorative treatments for carious lesions: A report from the American Dental Association. Slayton RL, Urquhart O, Araujo MWB, Fontana M, Guzmán-Armstrong S, Nascimento MM, Nový BB, Tinanoff N, Weyant RJ, Wolff MS, Young DA, Zero DT, Tampi MP, Pilcher L, Banfield L, Carrasco-Labra A.
- 3) J Dent Res. 2019; 98: 14-26. Nonrestorative Treatments for Caries: Systematic Review and Network Metaanalysis. Urquhart O, Tampi MP, Pilcher L, Slayton RL, Araujo MWB, Fontana M, Guzmán-Armstrong S, Nascimento MM, Nový BB, Tinanoff N, Weyant RJ, Wolff MS, Young DA, Zero DT, Brignardello-Petersen R, Banfield L, Parikh A, Joshi G, Carrasco-Labra A.
- Eur J Oral Sci. 1997; 105: 278-84. The Maillard reaction in demineralized dentin in vitro. Kleter GA, Damen JJ, Buijs MJ, Ten Cate JM.
- 5) J Dent Res. 1998; 77: 488-95. Modification of amino acid residues in carious dentin matrix. Kleter GA, Damen JJ, Buijs MJ, Ten Cate JM.
- 6) Arch oral Biol. 1964; 1: 309-332. Modification of the properties and composition of the dentin matrix caused by dental caries. WG Armstrong
- Caries Res. 2006. 40: 38-42. The effect of adjacent dentine blocks on the demineralisation and remineralisation of enamel in vitro. Lynch RJ, Ten Cate JM.
- 8) J Dent Res. 1975. 54: 728-736. Thermodynamic solubility product of human tooth enamel: powdered sample. Patel PR, Brown WE.
- 9) Caries Res. 1994. 28:14-20. Effects of a supersaturated pulpal fluid on the formation of caries-like lesions on the roots of human teeth. Shellis RP.
- 10) Caries Res. 1997. 31: 30-34. The effect of fluoridation on the occurrence of hidden caries in clinically sound occlusal surfaces. Weerheijm KL, Kidd EA, Groen HJ.
- 11) Int J Paediatr Dent. 2013; 23: 72-6. Effect of the widespread use of fluorides on the occurrence of hidden caries in children. Hashizume LN, Mathias TC, Cibils DM, Maltz M.

- ASDC J Dent Child. 1990. 57: 428-432. Occlusal hidden caries: a bacteriological profile. Weerheijm KL, de Soet JJ, de Graaff J, van Amerongen WE.
- 13) Caries Res. 1995. 29: 46-49. A comparison of the microbial flora in carious dentine of clinically detectable and undetectable occlusal lesions. de Soet JJ, Weerheijm KL, van Amerongen WE, de Graaff J.
- 14) Caries Res. 2008. 42: 37-45. Influence of salivary macromolecules and fluoride on enamel lesion remineralization in vitro. Fujikawa H, Matsuyama K, Uchiyama A, Nakashima S, Ujiie T.
- 15) DE. 2005. 155: 15-18. エナメル質の再石灰化とフッ化物. 中嶋省志.

第16章:象牙質における過石灰化現象(インビトロでの結果)

- Arch Oral Biol. 2015; 60: 574-81. Formation and characterization of hypermineralized zone beneath dentine lesion body induced by topical fluoride in-vitro. Khunkar SJ, Utaka S, Hariri I, Sadr A, Ikeda M, Nakashima S, Nikaido T, Tagami J.
- Dent Mater J 2013; 32: 241-7. Cariotester, a new device for assessment of dentin lesion remineralization in vitro. Utaka S, Nakashima S, Sadr A, Ikeda M, Nikaido T, Shimizu A, et al.
- 3) J Am Dent Assoc. 2018; 149: 837-849. Evidence-based clinical practice guideline on nonrestorative treatments for carious lesions: A report from the American Dental Association. Slayton RL, Urquhart O, Araujo MWB, Fontana M, Guzmán-Armstrong S, Nascimento MM, Nový BB, Tinanoff N, Weyant RJ, Wolff MS, Young DA, Zero DT, Tampi MP, Pilcher L, Banfield L, Carrasco-Labra A.
- 4) J Dent Res. 2019; 98: 14-26. Nonrestorative Treatments for Caries: Systematic Review and Network Metaanalysis. Urquhart O, Tampi MP, Pilcher L, Slayton RL, Araujo MWB, Fontana M, Guzmán-Armstrong S, Nascimento MM, Nový BB, Tinanoff N, Weyant RJ, Wolff MS, Young DA, Zero DT, Brignardello-Petersen R, Banfield L, Parikh A, Joshi G, Carrasco-Labra A.
- 5) Oral Health Prev Dent 2009; 7: 147-54. Evaluation of different fluoride treatments of initial root carious lesions in vivo. Fure S, Lingström P.
- 6) Am J Dent. 1994; 7: 261-5. Root caries histopathology and chemistry. Wefel JS.
- 7) J Dent Res 1997; 76: 1845-53. Arrest of root surface caries in situ. Nyvad B, ten Cate JM, Fejerskov O.
- Kawasaki K, Ruben J, Tsuda H, Huysmans MC, Takagi O. Relationship between mineral distributions in dentine lesions and subsequent remineralization in vitro. Caries Res 2000; 34: 395-403.
- Iijima Y, Ruben JL, Zuidgeest TG, Arends J. Fluoride and mineral content in hyper-remineralized coronal bovine dentine in vitro after an acid challenge. Caries Res 1993; 27: 106-10.
- 10) Arends J, Ruben JL, Inaba D. Major topics in quantitative microradiography of enamel and dentin: R parameter, mineral distribution visualization, and hyper-remineralization. Adv Dent Res 1997; 11: 403-14.
- Caries Res. 1996; 30: 218-24. Effect of sodium hypochlorite treatment on remineralization of human root dentine in vitro. Inaba D, Ruben J, Takagi O, Arends J.
- 12) J Dent Res. 1995; 74: 1266-71. Hypermineralization of dentinal lesions adjacent to glass-ionomer cement restorations. ten Cate JM, van Duinen RN.
- Caries Res 1992; 26: 153-64. Human root caries: histopathology of arrested lesions. Schüpbach P, Lutz F, Guggenheim B.

- 14) Arch Oral Biol 2007; 52: 591-7. Micromorphological and micronanalytical characterization of stagnating and progressing root caries lesions. Arnold WH, Bietau V, Renner PO, Gaengler P.
- 15) J Dent Res 1941; 20: 45-8. Magnesium determinations on all the dentin from sound and carious teeth. Tefft H, Ethel L, C. Hodge F and H.
- 16) Caries Res 2003; 37: 445-9. In vitro study of remineralization of dentin: effects of ions on mineral induction by decalcified dentin matrix. Saito T, Toyooka H, Ito S, Crenshaw MA.
- 17) Arch Oral Biol 1975; 20: 803-8. Growth of calcium phosphates on hydroxyapatite crystals: the effect of magnesium. Tomazic B, Tomson M, Nancollas GH.
- Calcif Tissue Int 1992; 51: 143-50. Competitive adsorption of magnesium and calcium ions onto synthetic and biological apatites. Aoba T, Moreno EC, Shimoda S.
- 19) J Dent Res 1981; 60: 1719-23. The effect of magnesium on apatite formation in seeded supersaturated solutions at pH 7.4. Eanes ED, Rattner SL.
- 20) Connect Tissue Res 1986; 14: 279-92. Identification of dentin phosphophoryn localization by histochemical stainings. Takagi Y, Fujisawa R, Sasaki S.
- 21) Arch Oral Biol 1988;33: 685-91. Induction and inhibition of hydroxyapatite formation by rat dentine phosphoprotein in vitro. Lussi A, Crenshaw MA, Linde A.
- 22) Connect Tissue Res 1989;21: 197-202. Mineral induction by polyanionic dentin and bone proteins at physiological ionic conditions. Linde A, Lussi A.
- Calcif Tissue Int 1989; 44: 286-295. Mineral induction by immobilized polyanionic proteins. Linde A, Lussi A, Crenshaw MA.
- 24) Caries Res 1993; 27: 241-8. Mineral induction in vivo by dentine proteins. Lussi A, Linde A.
- 25) Int J Dev Biol. 1995; 39: 169-79. The nature and functional significance of dentin extracellular matrix proteins. Butler WT, Ritchie H.
- 26) Biochemistry. 1976 10; 15: 3445-9. Dental phosphoprotein-induced formation of hydroxylapatite during in vitro synthesis of amorphous calcium phosphate. Nawrot CF, Campbell DJ, Schroeder JK, Van Valkenburg M.
- 27) J Dent Res 1990; 69: 896-900. Release of organic matrix components from bovine incisor roots during in vitro lesion formation. Klont B, ten Cate JM.
- 28) Caries Res. 2008; 42: 37-45. Influence of salivary macromolecules and fluoride on enamel lesion remineralization in vitro. Fujikawa H, Matsuyama K, Uchiyama A, Nakashima S, Ujiie T.
- 29) J Dent Res 1988; 67: 1229-34. Changes in bovine dentin mineral with sodium hypochlorite treatment. Sakae T, Mishima H, Kozawa Y.
- 30) Eur J Oral Sci. 2015; 123: 288-96. Inhibition of hydroxyapatite growth by casein, a potential salivary phosphoprotein homologue. Romero MJ, Nakashima S, Nikaido T, Ichinose S, Sadr A, Tagami J.
- 31) Arch Oral Biol. 2016; 68: 35-42. In vitro dentine remineralization with a potential salivary phosphoprotein homologue. Romero MJ, Nakashima S, Nikaido T, Sadr A, Tagami J.